Routing a maximum number of disks through a scene of moving obstacles

Author(s):  
Joondong Kim ◽  
Joseph S.B. Mitchell ◽  
Valentin Polishchuk ◽  
Arto Vihavainen
Keyword(s):  
1991 ◽  
Vol 24 (9) ◽  
pp. 501-506
Author(s):  
J. Takeno ◽  
Y. Shin’ogi ◽  
S. Nishiyama ◽  
K. Sorimati

1990 ◽  
Vol 20 (6) ◽  
pp. 1408-1422 ◽  
Author(s):  
J.G. de Lamadrid ◽  
M. Gini

2021 ◽  
Author(s):  
Luigi Tagliavini ◽  
Andrea Botta ◽  
Luca Carbonari ◽  
Giuseppe Quaglia ◽  
Dario Gandini ◽  
...  

Abstract In this paper, a novel mobile platform for assistive robotics tasks is presented. The machine is designed for working in a home environment, un-structured and possibly occupied by people. To work in this space, the platform must be able to get rid of all the consequent difficulties: to overpass small objects as steps and carpets, to operate with an as-high-as-possible dynamics, to avoid moving obstacles, and to navigate autonomously to track persons for person monitoring purposes. The proposed platform is designed to have an omni-directional mobility that improves the manoeuvrability with respect to state-of-the-art differential drive robots. It also will have a non-axisymmetric shape to easily navigate narrow spaces, and real-time edge computing algorithms for navigation. This work shows the design paradigm adopted for the realization of a novel mobile robot, named Paquitop. For a robust output, the design process used a modular approach which disjointed the several sub-systems which compose the machine. After a brief analysis of the expected features, a set of basic requirements are drawn to guide the functional and executive design. The overall architecture of the platform is presented, together with some details on the mechanical and electrical systems.


1991 ◽  
Vol 10 (3) ◽  
pp. 228-239 ◽  
Author(s):  
Boris Aronov ◽  
Steven Fortune ◽  
Gordon Wilfong

We consider the problem of determining how fast an object must be capable of moving for it to be able to reach a given position at a given time while avoiding moving obstacles. The problem is to plan velocity profile along a given path so that collisions with moving obstacles crossing the path are avoided and the maximum velocity along the path is mini mized. Suppose the time-varying environment is fully speci fied, both in space and in time, by n linear constraints. An algorithm is presented that, given a full description of the environment and the initial configuration of the system (that is, initial position and starting time of the object), answers in O(log n) time queries of the form : "What is the lowest speed limit that the object can obey while still being able to reach the query configuration from the initial configuration without colliding with the obstacles?" The algorithm can also be used to compute a motion from the initial configuration to the query configuration that obeys the speed limit in O (n ) time. The algorithm requires O (n log n) preprocessing time and O (n) space.


Sign in / Sign up

Export Citation Format

Share Document