Movement data anonymity through generalization

Author(s):  
Gennady Andrienko ◽  
Natalia Andrienko ◽  
Fosca Giannotti ◽  
Anna Monreale ◽  
Dino Pedreschi
Keyword(s):  
2019 ◽  
Vol 24 (4) ◽  
pp. 297-311
Author(s):  
José David Moreno ◽  
José A. León ◽  
Lorena A. M. Arnal ◽  
Juan Botella

Abstract. We report the results of a meta-analysis of 22 experiments comparing the eye movement data obtained from young ( Mage = 21 years) and old ( Mage = 73 years) readers. The data included six eye movement measures (mean gaze duration, mean fixation duration, total sentence reading time, mean number of fixations, mean number of regressions, and mean length of progressive saccade eye movements). Estimates were obtained of the typified mean difference, d, between the age groups in all six measures. The results showed positive combined effect size estimates in favor of the young adult group (between 0.54 and 3.66 in all measures), although the difference for the mean number of fixations was not significant. Young adults make in a systematic way, shorter gazes, fewer regressions, and shorter saccadic movements during reading than older adults, and they also read faster. The meta-analysis results confirm statistically the most common patterns observed in previous research; therefore, eye movements seem to be a useful tool to measure behavioral changes due to the aging process. Moreover, these results do not allow us to discard either of the two main hypotheses assessed for explaining the observed aging effects, namely neural degenerative problems and the adoption of compensatory strategies.


2014 ◽  
Author(s):  
Bernhard Angele ◽  
Elizabeth R. Schotter ◽  
Timothy Slattery ◽  
Tara L. Chaloukian ◽  
Klinton Bicknell ◽  
...  

Author(s):  
Heike Otten ◽  
Lennart Hildebrand ◽  
Till Nagel ◽  
Marian Dork ◽  
Boris Muller

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Daniel H. Blustein ◽  
Ahmed W. Shehata ◽  
Erin S. Kuylenstierna ◽  
Kevin B. Englehart ◽  
Jonathon W. Sensinger

AbstractWhen a person makes a movement, a motor error is typically observed that then drives motor planning corrections on subsequent movements. This error correction, quantified as a trial-by-trial adaptation rate, provides insight into how the nervous system is operating, particularly regarding how much confidence a person places in different sources of information such as sensory feedback or motor command reproducibility. Traditional analysis has required carefully controlled laboratory conditions such as the application of perturbations or error clamping, limiting the usefulness of motor analysis in clinical and everyday environments. Here we focus on error adaptation during unperturbed and naturalistic movements. With increasing motor noise, we show that the conventional estimation of trial-by-trial adaptation increases, a counterintuitive finding that is the consequence of systematic bias in the estimate due to noise masking the learner’s intention. We present an analytic solution relying on stochastic signal processing to reduce this effect of noise, producing an estimate of motor adaptation with reduced bias. The result is an improved estimate of trial-by-trial adaptation in a human learner compared to conventional methods. We demonstrate the effectiveness of the new method in analyzing simulated and empirical movement data under different noise conditions.


Author(s):  
Ayush Kumar ◽  
Prantik Howlader ◽  
Rafael Garcia ◽  
Daniel Weiskopf ◽  
Klaus Mueller

SLEEP ◽  
2021 ◽  
Vol 44 (Supplement_2) ◽  
pp. A111-A112
Author(s):  
Austin Vandegriffe ◽  
V A Samaranayake ◽  
Matthew Thimgan

Abstract Introduction Technological innovations have broadened the type and amount of activity data that can be captured in the home and under normal living conditions. Yet, converting naturalistic activity patterns into sleep and wakefulness states has remained a challenge. Despite the successes of current algorithms, they do not fill all actigraphy needs. We have developed a novel statistical approach to determine sleep and wakefulness times, called the Wasserstein Algorithm for Classifying Sleep and Wakefulness (WACSAW), and validated the algorithm in a small cohort of healthy participants. Methods WACSAW functional routines: 1) Conversion of the triaxial movement data into a univariate time series; 2) Construction of a Wasserstein weighted sum (WSS) time series by measuring the Wasserstein distance between equidistant distributions of movement data before and after the time-point of interest; 3) Segmenting the time series by identifying changepoints based on the behavior of the WSS series; 4) Merging segments deemed similar by the Levene test; 5) Comparing segments by optimal transport methodology to determine the difference from a flat, invariant distribution at zero. The resulting histogram can be used to determine sleep and wakefulness parameters around a threshold determined for each individual based on histogram properties. To validate the algorithm, participants wore the GENEActiv and a commercial grade actigraphy watch for 48 hours. The accuracy of WACSAW was compared to a detailed activity log and benchmarked against the results of the output from commercial wrist actigraph. Results WACSAW performed with an average accuracy, sensitivity, and specificity of >95% compared to detailed activity logs in 10 healthy-sleeping individuals of mixed sexes and ages. We then compared WACSAW’s performance against a common wrist-worn, commercial sleep monitor. WACSAW outperformed the commercial grade system in each participant compared to activity logs and the variability between subjects was cut substantially. Conclusion The performance of WACSAW demonstrates good results in a small test cohort. In addition, WACSAW is 1) open-source, 2) individually adaptive, 3) indicates individual reliability, 4) based on the activity data stream, and 5) requires little human intervention. WACSAW is worthy of validating against polysomnography and in patients with sleep disorders to determine its overall effectiveness. Support (if any):


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Jessica McFadyen ◽  
Christopher Nolan ◽  
Ellen Pinocy ◽  
David Buteri ◽  
Oliver Baumann

Abstract Background The ‘doorway effect’, or ‘location updating effect’, claims that we tend to forget items of recent significance immediately after crossing a boundary. Previous research suggests that such a forgetting effect occurs both at physical boundaries (e.g., moving from one room to another via a door) and metaphysical boundaries (e.g., imagining traversing a doorway, or even when moving from one desktop window to another on a computer). Here, we aimed to conceptually replicate this effect using virtual and physical environments. Methods Across four experiments, we measured participants’ hit and false alarm rates to memory probes for items recently encountered either in the same or previous room. Experiments 1 and 2 used highly immersive virtual reality without and with working memory load (Experiments 1 and 2, respectively). Experiment 3 used passive video watching and Experiment 4 used active real-life movement. Data analysis was conducted using frequentist as well as Bayesian inference statistics. Results Across this series of experiments, we observed no significant effect of doorways on forgetting. In Experiment 2, however, signal detection was impaired when participants responded to probes after moving through doorways, such that false alarm rates were increased for mismatched recognition probes. Thus, under working memory load, memory was more susceptible to interference after moving through doorways. Conclusions This study presents evidence that is inconsistent with the location updating effect as it has previously been reported. Our findings call into question the generalisability and robustness of this effect to slight paradigm alterations and, indeed, what factors contributed to the effect observed in previous studies.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Meng-Chun Chang ◽  
Rebecca Kahn ◽  
Yu-An Li ◽  
Cheng-Sheng Lee ◽  
Caroline O. Buckee ◽  
...  

Abstract Background As COVID-19 continues to spread around the world, understanding how patterns of human mobility and connectivity affect outbreak dynamics, especially before outbreaks establish locally, is critical for informing response efforts. In Taiwan, most cases to date were imported or linked to imported cases. Methods In collaboration with Facebook Data for Good, we characterized changes in movement patterns in Taiwan since February 2020, and built metapopulation models that incorporate human movement data to identify the high risk areas of disease spread and assess the potential effects of local travel restrictions in Taiwan. Results We found that mobility changed with the number of local cases in Taiwan in the past few months. For each city, we identified the most highly connected areas that may serve as sources of importation during an outbreak. We showed that the risk of an outbreak in Taiwan is enhanced if initial infections occur around holidays. Intracity travel reductions have a higher impact on the risk of an outbreak than intercity travel reductions, while intercity travel reductions can narrow the scope of the outbreak and help target resources. The timing, duration, and level of travel reduction together determine the impact of travel reductions on the number of infections, and multiple combinations of these can result in similar impact. Conclusions To prepare for the potential spread within Taiwan, we utilized Facebook’s aggregated and anonymized movement and colocation data to identify cities with higher risk of infection and regional importation. We developed an interactive application that allows users to vary inputs and assumptions and shows the spatial spread of the disease and the impact of intercity and intracity travel reduction under different initial conditions. Our results can be used readily if local transmission occurs in Taiwan after relaxation of border control, providing important insights into future disease surveillance and policies for travel restrictions.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3673
Author(s):  
Stefan Grushko ◽  
Aleš Vysocký ◽  
Petr Oščádal ◽  
Michal Vocetka ◽  
Petr Novák ◽  
...  

In a collaborative scenario, the communication between humans and robots is a fundamental aspect to achieve good efficiency and ergonomics in the task execution. A lot of research has been made related to enabling a robot system to understand and predict human behaviour, allowing the robot to adapt its motion to avoid collisions with human workers. Assuming the production task has a high degree of variability, the robot’s movements can be difficult to predict, leading to a feeling of anxiety in the worker when the robot changes its trajectory and approaches since the worker has no information about the planned movement of the robot. Additionally, without information about the robot’s movement, the human worker cannot effectively plan own activity without forcing the robot to constantly replan its movement. We propose a novel approach to communicating the robot’s intentions to a human worker. The improvement to the collaboration is presented by introducing haptic feedback devices, whose task is to notify the human worker about the currently planned robot’s trajectory and changes in its status. In order to verify the effectiveness of the developed human-machine interface in the conditions of a shared collaborative workspace, a user study was designed and conducted among 16 participants, whose objective was to accurately recognise the goal position of the robot during its movement. Data collected during the experiment included both objective and subjective parameters. Statistically significant results of the experiment indicated that all the participants could improve their task completion time by over 45% and generally were more subjectively satisfied when completing the task with equipped haptic feedback devices. The results also suggest the usefulness of the developed notification system since it improved users’ awareness about the motion plan of the robot.


Sign in / Sign up

Export Citation Format

Share Document