scholarly journals 3D Reconstruction of Incomplete Archaeological Objects Using a Generative Adversarial Network

Author(s):  
Renato Hermoza ◽  
Ivan Sipiran
2020 ◽  
pp. 1-1
Author(s):  
Caixia Liu ◽  
Dehui Kong ◽  
Shaofan Wang ◽  
Jinghua Li ◽  
Baocai Yin

Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2131
Author(s):  
Liang Lu ◽  
Hongbao Zhu ◽  
Junyu Dong ◽  
Yakun Ju ◽  
Huiyu Zhou

This paper presents a multi-spectral photometric stereo (MPS) method based on image in-painting, which can reconstruct the shape using a multi-spectral image with a laser line. One of the difficulties in multi-spectral photometric stereo is to extract the laser line because the required illumination for MPS, e.g., red, green, and blue light, may pollute the laser color. Unlike previous methods, through the improvement of the network proposed by Isola, a Generative Adversarial Network based on image in-painting was proposed, to separate a multi-spectral image with a laser line into a clean laser image and an uncorrupted multi-spectral image without the laser line. Then these results were substituted into the method proposed by Fan to obtain high-precision 3D reconstruction results. To make the proposed method applicable to real-world objects, a rendered image dataset obtained using the rendering models in ShapeNet has been used for training the network. Evaluation using the rendered images and real-world images shows the superiority of the proposed approach over several previous methods.


Author(s):  
Chong Yu

Because of the intrinsic complexity in computation, three-dimensional (3D) reconstruction is an essential and challenging topic in computer vision research and applications. The existing methods for 3D reconstruction often produce holes, distortions and obscure parts in the reconstructed 3D models, or can only reconstruct voxelized 3D models for simple isolated objects. So they are not adequate for real usage. From 2014, the Generative Adversarial Network (GAN) is widely used in generating unreal dataset and semi-supervised learning. So the focus of this paper is to achieve high quality 3D reconstruction performance by adopting GAN principle. We propose a novel semi-supervised 3D reconstruction framework, namely SS-3D-GAN, which can iteratively improve any raw 3D reconstruction models by training the GAN models to converge. This new model only takes real-time 2D observation images as the weak supervision, and doesn't rely on prior knowledge of shape models or any referenced observations. Finally, through the qualitative and quantitative experiments & analysis, this new method shows compelling advantages over the current state-of-the-art methods on Tanks & Temples reconstruction benchmark dataset.


2021 ◽  
Vol 13 (24) ◽  
pp. 5055
Author(s):  
Shihong Wang ◽  
Jiayi Guo ◽  
Yueting Zhang ◽  
Yuxin Hu ◽  
Chibiao Ding ◽  
...  

SAR tomography (TomoSAR) is an important technology for three-dimensional (3D) reconstruction of buildings through multiple coherent SAR images. In order to obtain sufficient signal-to-noise ratio (SNR), typical TomoSAR applications often require dozens of scenes of SAR images. However, limited by time and cost, the available SAR images are often only 3–5 scenes in practice, which makes the traditional TomoSAR technique unable to produce satisfactory SNR and elevation resolution. To tackle this problem, the conditional generative adversarial network (CGAN) is proposed to improve the TomoSAR 3D reconstruction by learning the prior information of building. Moreover, the number of tracks required can be reduced to three. Firstly, a TomoSAR 3D super-resolution dataset is constructed using high-quality data from the airborne array and low-quality data obtained from a small amount of tracks sampled from all observations. Then, the CGAN model is trained to estimate the corresponding high-quality result from the low-quality input. Airborne data experiments prove that the reconstruction results are improved in areas with and without overlap, both qualitatively and quantitatively. Furthermore, the network pretrained on the airborne dataset is directly used to process the spaceborne dataset without any tuning, and generates satisfactory results, proving the effectiveness and robustness of our method. The comparative experiment with nonlocal algorithm also shows that the proposed method has better height estimation and higher time efficiency.


2017 ◽  
Author(s):  
Benjamin Sanchez-Lengeling ◽  
Carlos Outeiral ◽  
Gabriel L. Guimaraes ◽  
Alan Aspuru-Guzik

Molecular discovery seeks to generate chemical species tailored to very specific needs. In this paper, we present ORGANIC, a framework based on Objective-Reinforced Generative Adversarial Networks (ORGAN), capable of producing a distribution over molecular space that matches with a certain set of desirable metrics. This methodology combines two successful techniques from the machine learning community: a Generative Adversarial Network (GAN), to create non-repetitive sensible molecular species, and Reinforcement Learning (RL), to bias this generative distribution towards certain attributes. We explore several applications, from optimization of random physicochemical properties to candidates for drug discovery and organic photovoltaic material design.


Author(s):  
Annapoorani Gopal ◽  
Lathaselvi Gandhimaruthian ◽  
Javid Ali

The Deep Neural Networks have gained prominence in the biomedical domain, becoming the most commonly used networks after machine learning technology. Mammograms can be used to detect breast cancers with high precision with the help of Convolutional Neural Network (CNN) which is deep learning technology. An exhaustive labeled data is required to train the CNN from scratch. This can be overcome by deploying Generative Adversarial Network (GAN) which comparatively needs lesser training data during a mammogram screening. In the proposed study, the application of GANs in estimating breast density, high-resolution mammogram synthesis for clustered microcalcification analysis, effective segmentation of breast tumor, analysis of the shape of breast tumor, extraction of features and augmentation of the image during mammogram classification have been extensively reviewed.


2019 ◽  
Vol 52 (21) ◽  
pp. 291-296 ◽  
Author(s):  
Minsung Sung ◽  
Jason Kim ◽  
Juhwan Kim ◽  
Son-Cheol Yu

Sign in / Sign up

Export Citation Format

Share Document