scholarly journals Arabic Diacritic Recovery Using a Feature-rich biLSTM Model

Author(s):  
Kareem Darwish ◽  
Ahmed Abdelali ◽  
Hamdy Mubarak ◽  
Mohamed Eldesouki

Diacritics (short vowels) are typically omitted when writing Arabic text, and readers have to reintroduce them to correctly pronounce words. There are two types of Arabic diacritics: The first are core-word diacritics (CW), which specify the lexical selection, and the second are case endings (CE), which typically appear at the end of word stems and generally specify their syntactic roles. Recovering CEs is relatively harder than recovering core-word diacritics due to inter-word dependencies, which are often distant. In this article, we use feature-rich recurrent neural network model that use a variety of linguistic and surface-level features to recover both core word diacritics and case endings. Our model surpasses all previous state-of-the-art systems with a CW error rate (CWER) of 2.9% and a CE error rate (CEER) of 3.7% for Modern Standard Arabic (MSA) and CWER of 2.2% and CEER of 2.5% for Classical Arabic (CA). When combining diacritized word cores with case endings, the resultant word error rates are 6.0% and 4.3% for MSA and CA, respectively. This highlights the effectiveness of feature engineering for such deep neural models.

2021 ◽  
Vol 11 (5) ◽  
pp. 2434
Author(s):  
Ali Al-Laith ◽  
Muhammad Shahbaz ◽  
Hind F. Alaskar ◽  
Asim Rehmat

At a time when research in the field of sentiment analysis tends to study advanced topics in languages, such as English, other languages such as Arabic still suffer from basic problems and challenges, most notably the availability of large corpora. Furthermore, manual annotation is time-consuming and difficult when the corpus is too large. This paper presents a semi-supervised self-learning technique, to extend an Arabic sentiment annotated corpus with unlabeled data, named AraSenCorpus. We use a neural network to train a set of models on a manually labeled dataset containing 15,000 tweets. We used these models to extend the corpus to a large Arabic sentiment corpus called “AraSenCorpus”. AraSenCorpus contains 4.5 million tweets and covers both modern standard Arabic and some of the Arabic dialects. The long-short term memory (LSTM) deep learning classifier is used to train and test the final corpus. We evaluate our proposed framework on two external benchmark datasets to ensure the improvement of the Arabic sentiment classification. The experimental results show that our corpus outperforms the existing state-of-the-art systems.


Author(s):  
Kashif Munir ◽  
Hai Zhao ◽  
Zuchao Li

The task of semantic role labeling ( SRL ) is dedicated to finding the predicate-argument structure. Previous works on SRL are mostly supervised and do not consider the difficulty in labeling each example which can be very expensive and time-consuming. In this article, we present the first neural unsupervised model for SRL. To decompose the task as two argument related subtasks, identification and clustering, we propose a pipeline that correspondingly consists of two neural modules. First, we train a neural model on two syntax-aware statistically developed rules. The neural model gets the relevance signal for each token in a sentence, to feed into a BiLSTM, and then an adversarial layer for noise-adding and classifying simultaneously, thus enabling the model to learn the semantic structure of a sentence. Then we propose another neural model for argument role clustering, which is done through clustering the learned argument embeddings biased toward their dependency relations. Experiments on the CoNLL-2009 English dataset demonstrate that our model outperforms the previous state-of-the-art baseline in terms of non-neural models for argument identification and classification.


Author(s):  
Lutz Edzard

This article is devoted to the philological analysis of selected features of Classical Arabic and Modern Standard Arabic as well as selected features of Middle Arabic. The sections on the writing system and phonology as well as morphology are held rather brief, as the aspect of “cultural embeddedness” seems to be less relevant in these realms of grammar. First and foremost, it reflects a nonexhaustive overview of some cases or even causes célèbres in Arabic syntax and semantics. The article concludes with a short philological analysis of a Middle Arabic (here: Judeo-Arabic) text.


2019 ◽  
Vol 28 (4) ◽  
pp. 1411-1431 ◽  
Author(s):  
Lauren Bislick ◽  
William D. Hula

Purpose This retrospective analysis examined group differences in error rate across 4 contextual variables (clusters vs. singletons, syllable position, number of syllables, and articulatory phonetic features) in adults with apraxia of speech (AOS) and adults with aphasia only. Group differences in the distribution of error type across contextual variables were also examined. Method Ten individuals with acquired AOS and aphasia and 11 individuals with aphasia participated in this study. In the context of a 2-group experimental design, the influence of 4 contextual variables on error rate and error type distribution was examined via repetition of 29 multisyllabic words. Error rates were analyzed using Bayesian methods, whereas distribution of error type was examined via descriptive statistics. Results There were 4 findings of robust differences between the 2 groups. These differences were found for syllable position, number of syllables, manner of articulation, and voicing. Group differences were less robust for clusters versus singletons and place of articulation. Results of error type distribution show a high proportion of distortion and substitution errors in speakers with AOS and a high proportion of substitution and omission errors in speakers with aphasia. Conclusion Findings add to the continued effort to improve the understanding and assessment of AOS and aphasia. Several contextual variables more consistently influenced breakdown in participants with AOS compared to participants with aphasia and should be considered during the diagnostic process. Supplemental Material https://doi.org/10.23641/asha.9701690


2019 ◽  
Author(s):  
Wengong Jin ◽  
Regina Barzilay ◽  
Tommi S Jaakkola

The problem of accelerating drug discovery relies heavily on automatic tools to optimize precursor molecules to afford them with better biochemical properties. Our work in this paper substantially extends prior state-of-the-art on graph-to-graph translation methods for molecular optimization. In particular, we realize coherent multi-resolution representations by interweaving trees over substructures with the atom-level encoding of the original molecular graph. Moreover, our graph decoder is fully autoregressive, and interleaves each step of adding a new substructure with the process of resolving its connectivity to the emerging molecule. We evaluate our model on multiple molecular optimization tasks and show that our model outperforms previous state-of-the-art baselines by a large margin.


2014 ◽  
Vol 53 (05) ◽  
pp. 343-343

We have to report marginal changes in the empirical type I error rates for the cut-offs 2/3 and 4/7 of Table 4, Table 5 and Table 6 of the paper “Influence of Selection Bias on the Test Decision – A Simulation Study” by M. Tamm, E. Cramer, L. N. Kennes, N. Heussen (Methods Inf Med 2012; 51: 138 –143). In a small number of cases the kind of representation of numeric values in SAS has resulted in wrong categorization due to a numeric representation error of differences. We corrected the simulation by using the round function of SAS in the calculation process with the same seeds as before. For Table 4 the value for the cut-off 2/3 changes from 0.180323 to 0.153494. For Table 5 the value for the cut-off 4/7 changes from 0.144729 to 0.139626 and the value for the cut-off 2/3 changes from 0.114885 to 0.101773. For Table 6 the value for the cut-off 4/7 changes from 0.125528 to 0.122144 and the value for the cut-off 2/3 changes from 0.099488 to 0.090828. The sentence on p. 141 “E.g. for block size 4 and q = 2/3 the type I error rate is 18% (Table 4).” has to be replaced by “E.g. for block size 4 and q = 2/3 the type I error rate is 15.3% (Table 4).”. There were only minor changes smaller than 0.03. These changes do not affect the interpretation of the results or our recommendations.


2021 ◽  
Vol 11 (15) ◽  
pp. 6975
Author(s):  
Tao Zhang ◽  
Lun He ◽  
Xudong Li ◽  
Guoqing Feng

Lipreading aims to recognize sentences being spoken by a talking face. In recent years, the lipreading method has achieved a high level of accuracy on large datasets and made breakthrough progress. However, lipreading is still far from being solved, and existing methods tend to have high error rates on the wild data and have the defects of disappearing training gradient and slow convergence. To overcome these problems, we proposed an efficient end-to-end sentence-level lipreading model, using an encoder based on a 3D convolutional network, ResNet50, Temporal Convolutional Network (TCN), and a CTC objective function as the decoder. More importantly, the proposed architecture incorporates TCN as a feature learner to decode feature. It can partly eliminate the defects of RNN (LSTM, GRU) gradient disappearance and insufficient performance, and this yields notable performance improvement as well as faster convergence. Experiments show that the training and convergence speed are 50% faster than the state-of-the-art method, and improved accuracy by 2.4% on the GRID dataset.


Author(s):  
Jorge F. Lazo ◽  
Aldo Marzullo ◽  
Sara Moccia ◽  
Michele Catellani ◽  
Benoit Rosa ◽  
...  

Abstract Purpose Ureteroscopy is an efficient endoscopic minimally invasive technique for the diagnosis and treatment of upper tract urothelial carcinoma. During ureteroscopy, the automatic segmentation of the hollow lumen is of primary importance, since it indicates the path that the endoscope should follow. In order to obtain an accurate segmentation of the hollow lumen, this paper presents an automatic method based on convolutional neural networks (CNNs). Methods The proposed method is based on an ensemble of 4 parallel CNNs to simultaneously process single and multi-frame information. Of these, two architectures are taken as core-models, namely U-Net based in residual blocks ($$m_1$$ m 1 ) and Mask-RCNN ($$m_2$$ m 2 ), which are fed with single still-frames I(t). The other two models ($$M_1$$ M 1 , $$M_2$$ M 2 ) are modifications of the former ones consisting on the addition of a stage which makes use of 3D convolutions to process temporal information. $$M_1$$ M 1 , $$M_2$$ M 2 are fed with triplets of frames ($$I(t-1)$$ I ( t - 1 ) , I(t), $$I(t+1)$$ I ( t + 1 ) ) to produce the segmentation for I(t). Results The proposed method was evaluated using a custom dataset of 11 videos (2673 frames) which were collected and manually annotated from 6 patients. We obtain a Dice similarity coefficient of 0.80, outperforming previous state-of-the-art methods. Conclusion The obtained results show that spatial-temporal information can be effectively exploited by the ensemble model to improve hollow lumen segmentation in ureteroscopic images. The method is effective also in the presence of poor visibility, occasional bleeding, or specular reflections.


2021 ◽  
pp. 1-12
Author(s):  
Yingwen Fu ◽  
Nankai Lin ◽  
Xiaotian Lin ◽  
Shengyi Jiang

Named entity recognition (NER) is fundamental to natural language processing (NLP). Most state-of-the-art researches on NER are based on pre-trained language models (PLMs) or classic neural models. However, these researches are mainly oriented to high-resource languages such as English. While for Indonesian, related resources (both in dataset and technology) are not yet well-developed. Besides, affix is an important word composition for Indonesian language, indicating the essentiality of character and token features for token-wise Indonesian NLP tasks. However, features extracted by currently top-performance models are insufficient. Aiming at Indonesian NER task, in this paper, we build an Indonesian NER dataset (IDNER) comprising over 50 thousand sentences (over 670 thousand tokens) to alleviate the shortage of labeled resources in Indonesian. Furthermore, we construct a hierarchical structured-attention-based model (HSA) for Indonesian NER to extract sequence features from different perspectives. Specifically, we use an enhanced convolutional structure as well as an enhanced attention structure to extract deeper features from characters and tokens. Experimental results show that HSA establishes competitive performance on IDNER and three benchmark datasets.


Sign in / Sign up

Export Citation Format

Share Document