Deep Learning--based Text Classification

2021 ◽  
Vol 54 (3) ◽  
pp. 1-40
Author(s):  
Shervin Minaee ◽  
Nal Kalchbrenner ◽  
Erik Cambria ◽  
Narjes Nikzad ◽  
Meysam Chenaghlu ◽  
...  

Deep learning--based models have surpassed classical machine learning--based approaches in various text classification tasks, including sentiment analysis, news categorization, question answering, and natural language inference. In this article, we provide a comprehensive review of more than 150 deep learning--based models for text classification developed in recent years, and we discuss their technical contributions, similarities, and strengths. We also provide a summary of more than 40 popular datasets widely used for text classification. Finally, we provide a quantitative analysis of the performance of different deep learning models on popular benchmarks, and we discuss future research directions.

Author(s):  
Nourhan Mohamed Zayed ◽  
Heba A. Elnemr

Deep learning (DL) is a special type of machine learning that attains great potency and flexibility by learning to represent input raw data as a nested hierarchy of essences and representations. DL consists of more layers than conventional machine learning that permit higher levels of abstractions and improved prediction from data. More abstract representations computed in terms of less abstract ones. The goal of this chapter is to present an intensive survey of existing literature on DL techniques over the last years especially in the medical imaging analysis field. All these techniques and algorithms have their points of interest and constraints. Thus, analysis of various techniques and transformations, submitted prior in writing, for plan and utilization of DL methods from medical image analysis prospective will be discussed. The authors provide future research directions in DL area and set trends and identify challenges in the medical imaging field. Furthermore, as quantity of medicinal application demands increase, an extended study and investigation in DL area becomes very significant.


Author(s):  
Muhammad Zulqarnain ◽  
Rozaida Ghazali ◽  
Yana Mazwin Mohmad Hassim ◽  
Muhammad Rehan

<p>Text classification is a fundamental task in several areas of natural language processing (NLP), including words semantic classification, sentiment analysis, question answering, or dialog management. This paper investigates three basic architectures of deep learning models for the tasks of text classification: Deep Belief Neural (DBN), Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN), these three main types of deep learning architectures, are largely explored to handled various classification tasks. DBN have excellent learning capabilities to extracts highly distinguishable features and good for general purpose. CNN have supposed to be better at extracting the position of various related features while RNN is modeling in sequential of long-term dependencies. This paper work shows the systematic comparison of DBN, CNN, and RNN on text classification tasks. Finally, we show the results of deep models by research experiment. The aim of this paper to provides basic guidance about the deep learning models that which models are best for the task of text classification.</p>


2021 ◽  
Author(s):  
Roberto Bentivoglio ◽  
Elvin Isufi ◽  
Sebastian Nicolaas Jonkman ◽  
Riccardo Taormina

Abstract. Deep Learning techniques have been increasingly used in flood risk management to overcome the limitations of accurate, yet slow, numerical models, and to improve the results of traditional methods for flood mapping. In this paper, we review 45 recent publications to outline the state-of-the-art of the field, identify knowledge gaps, and propose future research directions. The review focuses on the type of deep learning models used for various flood mapping applications, the flood types considered, the spatial scale of the studied events, and the data used for model development. The results show that models based on convolutional layers are usually more accurate as they leverage inductive biases to better process the spatial characteristics of the flooding events. Traditional models based on fully-connected layers, instead, provide accurate results when coupled with other statistical models. Deep learning models showed increased accuracy when compared to traditional approaches and increased speed when compared to numerical methods. While there exist several applications in flood susceptibility, inundation, and hazard mapping, more work is needed to understand how deep learning can assist real-time flood warning during an emergency, and how it can be employed to estimate flood risk. A major challenge lies in developing deep learning models that can generalize to unseen case studies and sites. Furthermore, all reviewed models and their outputs, are deterministic, with limited considerations for uncertainties in outcomes and probabilistic predictions. The authors argue that these identified gaps can be addressed by exploiting recent fundamental advancements in deep learning or by taking inspiration from developments in other applied areas. Models based on graph neural networks and neural operators can work with arbitrarily structured data and thus should be capable of generalizing across different case studies and could account for complex interactions with the natural and built environment. Neural operators can also speed up numerical models while preserving the underlying physical equations and could thus be used for reliable real-time warning. Similarly, probabilistic models can be built by resorting to Deep Gaussian Processes.


Author(s):  
Nag Nami ◽  
Melody Moh

Intelligent systems are capable of doing tasks on their own with minimal or no human intervention. With the advent of big data and IoT, these intelligence systems have made their ways into most industries and homes. With its recent advancements, deep learning has created a niche in the technology space and is being actively used in big data and IoT systems globally. With the wider adoption, deep learning models unfortunately have become susceptible to attacks. Research has shown that many state-of-the-art accurate models can be vulnerable to attacks by well-crafted adversarial examples. This chapter aims to provide concise, in-depth understanding of attacks and defense of deep learning models. The chapter first presents the key architectures and application domains of deep learning and their vulnerabilities. Next, it illustrates the prominent adversarial examples, including the algorithms and techniques used to generate these attacks. Finally, it describes challenges and mechanisms to counter these attacks, and suggests future research directions.


2020 ◽  
Vol 14 (12) ◽  
pp. 1151-1164
Author(s):  
Yao Wang ◽  
Yan Wang ◽  
Chunjie Guo ◽  
Xuping Xie ◽  
Sen Liang ◽  
...  

In this paper, we present a survey on the progress of radiogenomics research, which predicts cancer genotypes from imaging phenotypes and investigates the associations between them. First, we present an overview of the popular technology modalities for obtaining diagnostic medical images. Second, we summarize recently used methodologies for radiogenomics analysis, including statistical analysis, radiomics and deep learning. And then, we give a survey on the recent research based on several types of cancers. Finally, we discuss these studies and propose possible future research directions. In conclusion, we have identified strong correlations between cancer genotypes and imaging phenotypes. In addition, with the rapid growth of medical data, deep learning models show great application potential for radiogenomics.


2020 ◽  
Vol 14 ◽  
Author(s):  
Meghna Dhalaria ◽  
Ekta Gandotra

Purpose: This paper provides the basics of Android malware, its evolution and tools and techniques for malware analysis. Its main aim is to present a review of the literature on Android malware detection using machine learning and deep learning and identify the research gaps. It provides the insights obtained through literature and future research directions which could help researchers to come up with robust and accurate techniques for classification of Android malware. Design/Methodology/Approach: This paper provides a review of the basics of Android malware, its evolution timeline and detection techniques. It includes the tools and techniques for analyzing the Android malware statically and dynamically for extracting features and finally classifying these using machine learning and deep learning algorithms. Findings: The number of Android users is expanding very fast due to the popularity of Android devices. As a result, there are more risks to Android users due to the exponential growth of Android malware. On-going research aims to overcome the constraints of earlier approaches for malware detection. As the evolving malware are complex and sophisticated, earlier approaches like signature based and machine learning based are not able to identify these timely and accurately. The findings from the review shows various limitations of earlier techniques i.e. requires more detection time, high false positive and false negative rate, low accuracy in detecting sophisticated malware and less flexible. Originality/value: This paper provides a systematic and comprehensive review on the tools and techniques being employed for analysis, classification and identification of Android malicious applications. It includes the timeline of Android malware evolution, tools and techniques for analyzing these statically and dynamically for the purpose of extracting features and finally using these features for their detection and classification using machine learning and deep learning algorithms. On the basis of the detailed literature review, various research gaps are listed. The paper also provides future research directions and insights which could help researchers to come up with innovative and robust techniques for detecting and classifying the Android malware.


Author(s):  
Zheng Wang ◽  
Zhixiang Wang ◽  
Yinqiang Zheng ◽  
Yang Wu ◽  
Wenjun Zeng ◽  
...  

An efficient and effective person re-identification (ReID) system relieves the users from painful and boring video watching and accelerates the process of video analysis. Recently, with the explosive demands of practical applications, a lot of research efforts have been dedicated to heterogeneous person re-identification (Hetero-ReID). In this paper, we provide a comprehensive review of state-of-the-art Hetero-ReID methods that address the challenge of inter-modality discrepancies. According to the application scenario, we classify the methods into four categories --- low-resolution, infrared, sketch, and text. We begin with an introduction of ReID, and make a comparison between Homogeneous ReID (Homo-ReID) and Hetero-ReID tasks. Then, we describe and compare existing datasets for performing evaluations, and survey the models that have been widely employed in Hetero-ReID. We also summarize and compare the representative approaches from two perspectives, i.e., the application scenario and the learning pipeline. We conclude by a discussion of some future research directions. Follow-up updates are available at https://github.com/lightChaserX/Awesome-Hetero-reID


2020 ◽  
Author(s):  
Saeed Nosratabadi ◽  
Amir Mosavi ◽  
Puhong Duan ◽  
Pedram Ghamisi ◽  
Filip Ferdinand ◽  
...  

Abstract This paper provides the state of the art of data science in economics. Through a novel taxonomy of applications and methods advances in data science are investigated. The data science advances are investigated in three individual classes of deep learning models, ensemble models, and hybrid models. Application domains include stock market, marketing, E-commerce, corporate banking, and cryptocurrency. Prisma method, a systematic literature review methodology is used to ensure the quality of the survey. The findings revealed that the trends are on advancement of hybrid models as more than 51% of the reviewed articles applied hybrid model. On the other hand, it is found that based on the RMSE accuracy metric, hybrid models had higher prediction accuracy than other algorithms. While it is expected the trends go toward the advancements of deep learning models.


Sign in / Sign up

Export Citation Format

Share Document