Cancer genotypes prediction and associations analysis from imaging phenotypes: a survey on radiogenomics

2020 ◽  
Vol 14 (12) ◽  
pp. 1151-1164
Author(s):  
Yao Wang ◽  
Yan Wang ◽  
Chunjie Guo ◽  
Xuping Xie ◽  
Sen Liang ◽  
...  

In this paper, we present a survey on the progress of radiogenomics research, which predicts cancer genotypes from imaging phenotypes and investigates the associations between them. First, we present an overview of the popular technology modalities for obtaining diagnostic medical images. Second, we summarize recently used methodologies for radiogenomics analysis, including statistical analysis, radiomics and deep learning. And then, we give a survey on the recent research based on several types of cancers. Finally, we discuss these studies and propose possible future research directions. In conclusion, we have identified strong correlations between cancer genotypes and imaging phenotypes. In addition, with the rapid growth of medical data, deep learning models show great application potential for radiogenomics.

2021 ◽  
Author(s):  
Roberto Bentivoglio ◽  
Elvin Isufi ◽  
Sebastian Nicolaas Jonkman ◽  
Riccardo Taormina

Abstract. Deep Learning techniques have been increasingly used in flood risk management to overcome the limitations of accurate, yet slow, numerical models, and to improve the results of traditional methods for flood mapping. In this paper, we review 45 recent publications to outline the state-of-the-art of the field, identify knowledge gaps, and propose future research directions. The review focuses on the type of deep learning models used for various flood mapping applications, the flood types considered, the spatial scale of the studied events, and the data used for model development. The results show that models based on convolutional layers are usually more accurate as they leverage inductive biases to better process the spatial characteristics of the flooding events. Traditional models based on fully-connected layers, instead, provide accurate results when coupled with other statistical models. Deep learning models showed increased accuracy when compared to traditional approaches and increased speed when compared to numerical methods. While there exist several applications in flood susceptibility, inundation, and hazard mapping, more work is needed to understand how deep learning can assist real-time flood warning during an emergency, and how it can be employed to estimate flood risk. A major challenge lies in developing deep learning models that can generalize to unseen case studies and sites. Furthermore, all reviewed models and their outputs, are deterministic, with limited considerations for uncertainties in outcomes and probabilistic predictions. The authors argue that these identified gaps can be addressed by exploiting recent fundamental advancements in deep learning or by taking inspiration from developments in other applied areas. Models based on graph neural networks and neural operators can work with arbitrarily structured data and thus should be capable of generalizing across different case studies and could account for complex interactions with the natural and built environment. Neural operators can also speed up numerical models while preserving the underlying physical equations and could thus be used for reliable real-time warning. Similarly, probabilistic models can be built by resorting to Deep Gaussian Processes.


Author(s):  
Nag Nami ◽  
Melody Moh

Intelligent systems are capable of doing tasks on their own with minimal or no human intervention. With the advent of big data and IoT, these intelligence systems have made their ways into most industries and homes. With its recent advancements, deep learning has created a niche in the technology space and is being actively used in big data and IoT systems globally. With the wider adoption, deep learning models unfortunately have become susceptible to attacks. Research has shown that many state-of-the-art accurate models can be vulnerable to attacks by well-crafted adversarial examples. This chapter aims to provide concise, in-depth understanding of attacks and defense of deep learning models. The chapter first presents the key architectures and application domains of deep learning and their vulnerabilities. Next, it illustrates the prominent adversarial examples, including the algorithms and techniques used to generate these attacks. Finally, it describes challenges and mechanisms to counter these attacks, and suggests future research directions.


2021 ◽  
Vol 54 (3) ◽  
pp. 1-40
Author(s):  
Shervin Minaee ◽  
Nal Kalchbrenner ◽  
Erik Cambria ◽  
Narjes Nikzad ◽  
Meysam Chenaghlu ◽  
...  

Deep learning--based models have surpassed classical machine learning--based approaches in various text classification tasks, including sentiment analysis, news categorization, question answering, and natural language inference. In this article, we provide a comprehensive review of more than 150 deep learning--based models for text classification developed in recent years, and we discuss their technical contributions, similarities, and strengths. We also provide a summary of more than 40 popular datasets widely used for text classification. Finally, we provide a quantitative analysis of the performance of different deep learning models on popular benchmarks, and we discuss future research directions.


Author(s):  
Nourhan Mohamed Zayed ◽  
Heba A. Elnemr

Deep learning (DL) is a special type of machine learning that attains great potency and flexibility by learning to represent input raw data as a nested hierarchy of essences and representations. DL consists of more layers than conventional machine learning that permit higher levels of abstractions and improved prediction from data. More abstract representations computed in terms of less abstract ones. The goal of this chapter is to present an intensive survey of existing literature on DL techniques over the last years especially in the medical imaging analysis field. All these techniques and algorithms have their points of interest and constraints. Thus, analysis of various techniques and transformations, submitted prior in writing, for plan and utilization of DL methods from medical image analysis prospective will be discussed. The authors provide future research directions in DL area and set trends and identify challenges in the medical imaging field. Furthermore, as quantity of medicinal application demands increase, an extended study and investigation in DL area becomes very significant.


2019 ◽  
Vol 90 (5-6) ◽  
pp. 710-727 ◽  
Author(s):  
Yiwei Ouyang ◽  
Xianyan Wu

In order to review the most effective ways to improve the mechanical properties of composite T-beams and further increase their application potential, research progress on the mechanical properties of textile structural composite T-beams was summarized based on two-dimensional (2-D) ply structure composite T-beams, delamination resistance enhanced 2-D ply structure T-beams, and three-dimensional (3-D) textile structural composite T-beams; future research directions for composite T-beams were also considered. From existing literature, the research status and application bottlenecks of 2-D ply structure composite T-beams and T-beams with enhanced delamination resistance performance were described, as were the specific classification, research progress, and mechanical properties of 3-D textile structural composite T-beams. In addition, the superior mechanical properties of 3-D braided textile structural composite T-beams, specifically their application potential based on excellent delamination resistance capacity, were highlighted. Future research directions for composite T-beams, that is, the applications of high-performance raw materials, locally enhanced design, structural blending enhancement, functionality, and intelligence are presented in this review.


2021 ◽  
Author(s):  
Hajer Ghodhbani ◽  
Adel Alimi ◽  
Mohamed Neji ◽  
Imran Razzak

<p>Our work aims to conduct a comprehensive literature review of deep learning methods applied in the fashion industry and, especially, the image-based virtual fitting task by citing research works published in the last years. We have summarized their challenges, their main frameworks, the popular benchmark datasets, and the different evaluation metrics. Also, some promising future research directions are discussed to propose improvements in this research field.</p>


2021 ◽  
Author(s):  
Hajer Ghodhbani ◽  
Adel Alimi ◽  
Mohamed Neji

<p>Our work aims to conduct a comprehensive literature review of deep learning methods applied in the fashion industry and, especially, the image-based virtual fitting task by citing research works published in the last years. We have summarized their challenges, their main frameworks, the popular benchmark datasets, and the different evaluation metrics. Also, some promising future research directions are discussed to propose improvements in this research field.</p>


2019 ◽  
Vol 3 (1) ◽  
pp. 14 ◽  
Author(s):  
Matteo Bodini

The task of facial landmark extraction is fundamental in several applications which involve facial analysis, such as facial expression analysis, identity and face recognition, facial animation, and 3D face reconstruction. Taking into account the most recent advances resulting from deep-learning techniques, the performance of methods for facial landmark extraction have been substantially improved, even on in-the-wild datasets. Thus, this article presents an updated survey on facial landmark extraction on 2D images and video, focusing on methods that make use of deep-learning techniques. An analysis of many approaches comparing the performances is provided. In summary, an analysis of common datasets, challenges, and future research directions are provided.


2021 ◽  
Vol 2079 (1) ◽  
pp. 012029
Author(s):  
Xueyuan Liu

Abstract The process of using CNN (Convolutional Neural Network) to blend the contents of a picture with different styles is called neural style transfer (NST). The purpose of this paper is to introduce current progress of NST, and introduce in detail the classification of the main NST algorithms based on deep learning, and make qualitative and quantitative comparisons of different algorithms, and then analyze the application prospects of image style migration in related fields, and finally summarize the existing problems and future research directions of NST.


2021 ◽  
Author(s):  
Atiq Rehman ◽  
Samir Brahim Belhaouari

<div><div><div><p>Video classification task has gained a significant success in the recent years. Specifically, the topic has gained more attention after the emergence of deep learning models as a successful tool for automatically classifying videos. In recognition to the importance of video classification task and to summarize the success of deep learning models for this task, this paper presents a very comprehensive and concise review on the topic. There are a number of existing reviews and survey papers related to video classification in the scientific literature. However, the existing review papers are either outdated, and therefore, do not include the recent state-of-art works or they have some limitations. In order to provide an updated and concise review, this paper highlights the key findings based on the existing deep learning models. The key findings are also discussed in a way to provide future research directions. This review mainly focuses on the type of network architecture used, the evaluation criteria to measure the success, and the data sets used. To make the review self- contained, the emergence of deep learning methods towards automatic video classification and the state-of-art deep learning methods are well explained and summarized. Moreover, a clear insight of the newly developed deep learning architectures and the traditional approaches is provided, and the critical challenges based on the benchmarks are highlighted for evaluating the technical progress of these methods. The paper also summarizes the benchmark datasets and the performance evaluation matrices for video classification. Based on the compact, complete, and concise review, the paper proposes new research directions to solve the challenging video classification problem.</p></div></div></div>


Sign in / Sign up

Export Citation Format

Share Document