Reparo: A Fast RAID Recovery Scheme for Ultra-large SSDs

2021 ◽  
Vol 17 (3) ◽  
pp. 1-24
Author(s):  
Duwon Hong ◽  
Keonsoo Ha ◽  
Minseok Ko ◽  
Myoungjun Chun ◽  
Yoona Kim ◽  
...  

A recent ultra-large SSD (e.g., a 32-TB SSD) provides many benefits in building cost-efficient enterprise storage systems. Owing to its large capacity, however, when such SSDs fail in a RAID storage system, a long rebuild overhead is inevitable for RAID reconstruction that requires a huge amount of data copies among SSDs. Motivated by modern SSD failure characteristics, we propose a new recovery scheme, called reparo , for a RAID storage system with ultra-large SSDs. Unlike existing RAID recovery schemes, reparo repairs a failed SSD at the NAND die granularity without replacing it with a new SSD, thus avoiding most of the inter-SSD data copies during a RAID recovery step. When a NAND die of an SSD fails, reparo exploits a multi-core processor of the SSD controller in identifying failed LBAs from the failed NAND die and recovering data from the failed LBAs. Furthermore, reparo ensures no negative post-recovery impact on the performance and lifetime of the repaired SSD. Experimental results using 32-TB enterprise SSDs show that reparo can recover from a NAND die failure about 57 times faster than the existing rebuild method while little degradation on the SSD performance and lifetime is observed after recovery.

2020 ◽  
pp. 082-093
Author(s):  
S.Yu. Punda ◽  
◽  

A review of modern data storage architectures was conducted, the advantages and disadvantages of each of them were given. The data storage systems of the IBM FlashSystem family were analyzed, as well as Spectrum Virtualize software, which is responsible for virtualization, compression, distribution and replication of data stored on the storage system. A mathematical model of the data storage system of IBM Storwize v5030E was developed. Well-known metrics are used to evaluate its performance when using spindle and solid-state drives. The effect of hardware and software data compression on system performance has been experimentally revealed. Recommendations are formulated by which it is possible to determine which media and which technology stack should be used by a business user to complete the tasks assigned to him.


2017 ◽  
Vol 68 (11) ◽  
pp. 2641-2645
Author(s):  
Alexandru Ciocan ◽  
Ovidiu Mihai Balan ◽  
Mihaela Ramona Buga ◽  
Tudor Prisecaru ◽  
Mohand Tazerout

The current paper presents an energy storage system that stores the excessive energy, provided by a hybrid system of renewable energy sources, in the form of compressed air and thermal heat. Using energy storage systems together with renewable energy sources represents a major challenge that could ensure the transition to a viable economic future and a decarbonized economy. Thermodynamic calculations are conducted to investigate the performance of such systems by using Matlab simulation tools. The results indicate the values of primary and global efficiencies for various operating scenarios for the energy storage systems which use compressed air as medium storage, and shows that these could be very effective systems, proving the possibility to supply to the final user three types of energy: electricity, heat and cold function of his needs.


Clean Energy ◽  
2021 ◽  
Vol 5 (2) ◽  
pp. 254-272
Author(s):  
C Palanichamy ◽  
P Naveen

Abstract In 2018, the Government of India approved the establishment of the New All India Institute of Medical Sciences (AIIMS) in Thoppur, Madurai, Tamil Nadu, India. As the most important amenity for continuing primary care and rescue response is a healthcare facility, a secure electricity supply becomes an imperative necessity. Hence, as the energy supplier for the new AIIMS, Madurai, this paper proposes a microgrid combined with the utility grid. The microgrid consists of a 4-MW photovoltaic system, a 1.8-MW wind-turbine energy-conversion system, a backup diesel generator capable of meeting the forecasted maximum demand and a 1-MW battery energy-storage system. The AIIMS Microgrid will have a service providing a capacity of 20 MVA following integration with the utility grid. The proposed microgrid would be the first attempt at healthcare facilities in India since its first day of work to ensure the availability of electricity. It would have a 9.8% return on investment, a 13.6% internal rate of return and a payback period of 6.75 years once it is operational, as well as an attractive levelized cost of energy (LCOE) of USD 0.07547/kWh. It would provide an environmentally friendly atmosphere by avoiding an annual emission of 6 261 132 kg of carbon dioxide, 27 362 kg of sulphur dioxide and 12 838 kg of nitrogen oxides as compared to power supplied entirely from the utility grid.


2021 ◽  
Author(s):  
Mervette El Batouti ◽  
H. A. Fetouh

New ferroelectric perovskite sample: excellent dielectric, negligible dielectric loss for energy storage systems such as solar cells, solar ponds, and thermal collectors has been prepared at low cost using nanotechnology.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 549
Author(s):  
Eric Pareis ◽  
Eric Hittinger

With an increase in renewable energy generation in the United States, there is a growing need for more frequency regulation to ensure the stability of the electric grid. Fast ramping natural gas plants are often used for frequency regulation, but this creates emissions associated with the burning of fossil fuels. Energy storage systems (ESSs), such as batteries and flywheels, provide an alternative frequency regulation service. However, the efficiency losses of charging and discharging a storage system cause additional electrical generation requirements and associated emissions. There is not a good understanding of these indirect emissions from charging and discharging ESSs in the literature, with most sources stating that ESSs for frequency regulation have lower emissions, without quantification of these emissions. We created a model to estimate three types of emissions (CO2, NOX, and SO2) from ESSs providing frequency regulation, and compare them to emissions from a natural gas plant providing the same service. When the natural gas plant is credited for the generated electricity, storage systems have 33% to 68% lower CO2 emissions than the gas turbine, depending on the US eGRID subregion, but higher NOX and SO2 emissions. However, different plausible assumptions about the framing of the analysis can make ESSs a worse choice so the true difference depends on the nature of the substitution between storage and natural gas generation.


2007 ◽  
Vol 130 (1) ◽  
Author(s):  
Doerte Laing ◽  
Wolf-Dieter Steinmann ◽  
Michael Fiß ◽  
Rainer Tamme ◽  
Thomas Brand ◽  
...  

Cost-effective integrated storage systems are important components for the accelerated market penetration of solarthermal power plants. Besides extended utilization of the power block, the main benefits of storage systems are improved efficiency of components, and facilitated integration into the electrical grids. For parabolic trough power plants using synthetic oil as the heat transfer medium, the application of solid media sensible heat storage is an attractive option in terms of investment and maintenance costs. For commercial oil trough technology, a solid media sensible heat storage system was developed and tested. One focus of the project was the cost reduction of the heat exchanger; the second focus lies in the energetic and exergetic analysis of modular storage operation concepts, including a cost assessment of these concepts. The results show that technically there are various interesting ways to improve storage performance. However, these efforts do not improve the economical aspect. Therefore, the tube register with straight parallel tubes without additional structures to enhance heat transfer has been identified as the best option concerning manufacturing aspects and investment costs. The results of the energetic and exergetic analysis of modular storage integration and operation concepts show a significant potential for economic optimization. An increase of more than 100% in storage capacity or a reduction of more than a factor of 2 in storage size and therefore investment cost for the storage system was calculated. A complete economical analysis, including the additional costs for this concept on the solar field piping and control, still has to be performed.


2012 ◽  
Vol 601 ◽  
pp. 347-353
Author(s):  
Xiong Zhi Wang ◽  
Guo Qing Wang

We study the order picking problem in carousels system with a single picker. The objective is to find a picking scheduling to minimizing the total order picking time. After showing the problem being strongly in NP-Hard and finding two characteristics, we construct an approximation algorithm for a special case (two carousels) and a heuristics for the general problem. Experimental results verify that the solutions are quickly and steadily achieved and show its better performance.


Sign in / Sign up

Export Citation Format

Share Document