Janus

Author(s):  
Timofei Istomin ◽  
Elia Leoni ◽  
Davide Molteni ◽  
Amy L. Murphy ◽  
Gian Pietro Picco ◽  
...  

Proximity detection is at the core of several mobile and ubiquitous computing applications. These include reactive use cases, e.g., alerting individuals of hazards or interaction opportunities, and others concerned only with logging proximity data, e.g., for offline analysis and modeling. Common approaches rely on Bluetooth Low Energy (BLE) or ultra-wideband (UWB) radios. Nevertheless, these strike opposite tradeoffs between the accuracy of distance estimates quantifying proximity and the energy efficiency affecting system lifetime, effectively forcing a choice between the two and ultimately constraining applicability. Janus reconciles these dimensions in a dual-radio protocol enabling accurate and energy-efficient proximity detection, where the energy-savvy BLE is exploited to discover devices and coordinate their distance measurements, acquired via the energy-hungry UWB. A model supports domain experts in configuring Janus for their use cases with predictable performance. The latency, reliability, and accuracy of Janus are evaluated experimentally, including realistic scenarios endowed with the mm-level ground truth provided by a motion capture system. Energy measurements show that Janus achieves weeks to months of autonomous operation, depending on the use case configuration. Finally, several large-scale campaigns exemplify its practical usefulness in real-world contexts.

2019 ◽  
Vol 1 ◽  
pp. 1-1
Author(s):  
Roberto de Figueiredo Ribeiro

<p><strong>Abstract.</strong> Accurate measurement of distances is of paramount importance to transportation infrastructure planning. Be it for estimating travel time, locating accidents and hazards through road markers, planning maintenance services, or setting prices for building contracts, distance is the primary metric upon which all aspects of the job are based, given that transportation infrastructure deals mostly with linear features. Yet, countries with older infrastructure often don’t know for how long their networks run &amp;ndash; especially so in case of developing countries. Brazil currently has over 2640000&amp;thinsp;km of roads, with construction documentation lacking for most of the network. The most used method for generating distance measurements, the car odometer from driving between two points, while apt for doing macro-regional planning, is unfit for large-scale engineering work, as this study shows below.</p><p>The industry standard for measuring distances uses a precision odometer connected to specialized tires, used either on their own or as a “fifth wheel” on a vehicle. Such method, however, is laborious and slow, and only generates a scalar between two points, with any new distance necessitating a new measurement, even if the two sets share a common space, or if one distance is a subset of the other. This paper proposes the usage of systematic mapping techniques to generate topographic linear features with measuring information, from which any distance can be calculated. To generate these features, first a linear path is constructed in GIS software over a route. The height information of each node in the path is then extracted from a source, and then the topographic distance is calculated from the vertical profile. Finally, an M coordinate is generated for each node.</p><p>For comparison between sources, a base path was used as ground truth. This path was constructed from a GNSS survey along the road, collected on cinematic mode at 10Hz (1.1&amp;thinsp;m gap between points), and post-processed with fixed-phase relative positioning tied to a base station. The mean positional quality achieved was 2.5 cm of planimetric, and 4.3&amp;thinsp;cm of altimetric precision. Two other sources of height information were used for comparison, one a flight DTM with 33&amp;thinsp;cm LE90 and 1 m of cell size, and the NASA 1 Arc-second SRTM with a nominal 9&amp;thinsp;m LE90 and 30&amp;thinsp;m cell size. Furthermore, a planimetric distance using a navigational GPS device (C/A code only) was also calculated. Two highways were selected for testing, and divided into 341 segments of 200 meters each, to account for the influence of slope in the calculations.</p><p>As expected, the flight DTM came the closest to the base model, deviating from it at an average of 31.95&amp;thinsp;ppm, with 2.8&amp;thinsp;ppm of standard error. It is, however, the most expensive and time-consuming method. The SRTM deviated an average of 5131.53&amp;thinsp;ppm and showed very high variation, with 8481.96&amp;thinsp;ppm of standard error. The navigation GPS deviated at an average of 685.18 ppm, with 633.11&amp;thinsp;ppm of standard error. Both the SRTM and GPS appear to deviate further from the base model as slope increases, but given that few segments with over 2.5&amp;deg; of slope were present in the sample, a correlation could not yet be established. For comparison, the average of the car odometer method was 16654.51 ppm, with a standard error of 22661.69&amp;thinsp;ppm.</p><p> Given its high deviation, the SRTM is unfit for precision work, but is a big improvement over using the car odometer for general indications. Further studies with mid-range DTMs should be done to provide a remote sensing alternative. The handheld GPS had better results than expected, given its nominal precision of 15&amp;thinsp;m. Despite a probable larger absolute positioning error, its relative error distribution remained steady enough to allow a good distance measurement.</p>


2020 ◽  
Vol 39 (10-11) ◽  
pp. 1346-1364
Author(s):  
Amado Antonini ◽  
Winter Guerra ◽  
Varun Murali ◽  
Thomas Sayre-McCord ◽  
Sertac Karaman

This article describes the Blackbird unmanned aerial vehicle (UAV) Dataset, a large-scale suite of sensor data and corresponding ground truth from a custom-built quadrotor platform equipped with an inertial measurement unit (IMU), rotor tachometers, and virtual color, grayscale, and depth cameras. Motivated by the increasing demand for agile, autonomous operation of aerial vehicles, this dataset is designed to facilitate the development and evaluation of high-performance UAV perception algorithms. The dataset contains over 10 hours of data from our quadrotor tracing 18 different trajectories at varying maximum speeds (0.5 to 13.8 ms-1) through 5 different visual environments for a total of 176 unique flights. For each flight, we provide 120 Hz grayscale, 60 Hz RGB-D, and 60 Hz semantically segmented images from forward stereo and downward-facing photorealistic virtual cameras in addition to 100 Hz IMU, ~190 Hz motor speed sensors, and 360 Hz millimeter-accurate motion capture ground truth. The Blackbird UAV dataset is therefore well suited to the development of algorithms for visual inertial navigation, 3D reconstruction, and depth estimation. As a benchmark for future algorithms, the performance of two state-of-the-art visual odometry algorithms are reported and scripts for comparing against the benchmarks are included with the dataset. The dataset is available for download at http://blackbird-dataset.mit.edu/ .


Author(s):  
A. V. Ponomarev

Introduction: Large-scale human-computer systems involving people of various skills and motivation into the information processing process are currently used in a wide spectrum of applications. An acute problem in such systems is assessing the expected quality of each contributor; for example, in order to penalize incompetent or inaccurate ones and to promote diligent ones.Purpose: To develop a method of assessing the expected contributor’s quality in community tagging systems. This method should only use generally unreliable and incomplete information provided by contributors (with ground truth tags unknown).Results:A mathematical model is proposed for community image tagging (including the model of a contributor), along with a method of assessing the expected contributor’s quality. The method is based on comparing tag sets provided by different contributors for the same images, being a modification of pairwise comparison method with preference relation replaced by a special domination characteristic. Expected contributors’ quality is evaluated as a positive eigenvector of a pairwise domination characteristic matrix. Community tagging simulation has confirmed that the proposed method allows you to adequately estimate the expected quality of community tagging system contributors (provided that the contributors' behavior fits the proposed model).Practical relevance: The obtained results can be used in the development of systems based on coordinated efforts of community (primarily, community tagging systems). 


2019 ◽  
Vol 7 ◽  
Author(s):  
Brian Stucky ◽  
James Balhoff ◽  
Narayani Barve ◽  
Vijay Barve ◽  
Laura Brenskelle ◽  
...  

Insects are possibly the most taxonomically and ecologically diverse class of multicellular organisms on Earth. Consequently, they provide nearly unlimited opportunities to develop and test ecological and evolutionary hypotheses. Currently, however, large-scale studies of insect ecology, behavior, and trait evolution are impeded by the difficulty in obtaining and analyzing data derived from natural history observations of insects. These data are typically highly heterogeneous and widely scattered among many sources, which makes developing robust information systems to aggregate and disseminate them a significant challenge. As a step towards this goal, we report initial results of a new effort to develop a standardized vocabulary and ontology for insect natural history data. In particular, we describe a new database of representative insect natural history data derived from multiple sources (but focused on data from specimens in biological collections), an analysis of the abstract conceptual areas required for a comprehensive ontology of insect natural history data, and a database of use cases and competency questions to guide the development of data systems for insect natural history data. We also discuss data modeling and technology-related challenges that must be overcome to implement robust integration of insect natural history data.


2021 ◽  
Vol 17 (3) ◽  
pp. 1-35
Author(s):  
Juncheng Yang ◽  
Yao Yue ◽  
K. V. Rashmi

Modern web services use in-memory caching extensively to increase throughput and reduce latency. There have been several workload analyses of production systems that have fueled research in improving the effectiveness of in-memory caching systems. However, the coverage is still sparse considering the wide spectrum of industrial cache use cases. In this work, we significantly further the understanding of real-world cache workloads by collecting production traces from 153 in-memory cache clusters at Twitter, sifting through over 80 TB of data, and sometimes interpreting the workloads in the context of the business logic behind them. We perform a comprehensive analysis to characterize cache workloads based on traffic pattern, time-to-live (TTL), popularity distribution, and size distribution. A fine-grained view of different workloads uncover the diversity of use cases: many are far more write-heavy or more skewed than previously shown and some display unique temporal patterns. We also observe that TTL is an important and sometimes defining parameter of cache working sets. Our simulations show that ideal replacement strategy in production caches can be surprising, for example, FIFO works the best for a large number of workloads.


Author(s):  
Sharon E. Nicholson ◽  
Douglas Klotter ◽  
Adam T. Hartman

AbstractThis article examined rainfall enhancement over Lake Victoria. Estimates of over-lake rainfall were compared with rainfall in the surrounding lake catchment. Four satellite products were initially tested against estimates based on gauges or water balance models. These included TRMM 3B43, IMERG V06 Final Run (IMERG-F), CHIRPS2, and PERSIANN-CDR. There was agreement among the satellite products for catchment rainfall but a large disparity among them for over-lake rainfall. IMERG-F was clearly an outlier, exceeding the estimate from TRMM 3B43 by 36%. The overestimation by IMERG-F was likely related to passive microwave assessments of strong convection, such as prevails over Lake Victoria. Overall, TRMM 3B43 showed the best agreement with the "ground truth" and was used in further analyses. Over-lake rainfall was found to be enhanced compared to catchment rainfall in all months. During the March-to-May long rains the enhancement varied between 40% and 50%. During the October-to-December short rains the enhancement varied between 33% and 44%. Even during the two dry seasons the enhancement was at least 20% and over 50% in some months. While the magnitude of enhancement varied from month to month, the seasonal cycle was essentially the same for over-lake and catchment rainfall, suggesting that the dominant influence on over-lake rainfall is the large-scale environment. The association with Mesoscale Convective Systems (MCSs) was also evaluated. The similarity of the spatial patterns of rainfall and MCS count each month suggested that these produced a major share of rainfall over the lake. Similarity in interannual variability further supported this conclusion.


Author(s):  
Maggie Hess

Purpose: Intraventricular hemorrhage (IVH) affects nearly 15% of preterm infants. It can lead to ventricular dilation and cognitive impairment. To ablate IVH clots, MR-guided focused ultrasound surgery (MRgFUS) is investigated. This procedure requires accurate, fast and consistent quantification of ventricle and clot volumes. Methods: We developed a semi-autonomous segmentation (SAS) algorithm for measuring changes in the ventricle and clot volumes. Images are normalized, and then ventricle and clot masks are registered to the images. Voxels of the registered masks and voxels obtained by thresholding the normalized images are used as seed points for competitive region growing, which provides the final segmentation. The user selects the areas of interest for correspondence after thresholding and these selections are the final seeds for region growing. SAS was evaluated on an IVH porcine model.  Results: SAS was compared to ground truth manual segmentation (MS) for accuracy, efficiency, and consistency. Accuracy was determined by comparing clot and ventricle volumes produced by SAS and MS. In Two-One-Sided Test, SAS and MS were found to be significantly equivalent (p < 0.01). SAS on average was found to be 15 times faster than MS (p < 0.01). Consistency was determined by repeated segmentation of the same image by both SAS and manual methods, SAS being significantly more consistent than MS (p < 0.05).  Conclusion: SAS is a viable method to quantify the IVH clot and the lateral brain ventricles and it is serving in a large- scale porcine study of MRgFUS treatment of IVH clot lysis.


2020 ◽  
Vol 1 (2) ◽  
pp. 101-123
Author(s):  
Hiroaki Shiokawa ◽  
Yasunori Futamura

This paper addressed the problem of finding clusters included in graph-structured data such as Web graphs, social networks, and others. Graph clustering is one of the fundamental techniques for understanding structures present in the complex graphs such as Web pages, social networks, and others. In the Web and data mining communities, the modularity-based graph clustering algorithm is successfully used in many applications. However, it is difficult for the modularity-based methods to find fine-grained clusters hidden in large-scale graphs; the methods fail to reproduce the ground truth. In this paper, we present a novel modularity-based algorithm, \textit{CAV}, that shows better clustering results than the traditional algorithm. The proposed algorithm employs a cohesiveness-aware vector partitioning into the graph spectral analysis to improve the clustering accuracy. Additionally, this paper also presents a novel efficient algorithm \textit{P-CAV} for further improving the clustering speed of CAV; P-CAV is an extension of CAV that utilizes the thread-based parallelization on a many-core CPU. Our extensive experiments on synthetic and public datasets demonstrate the performance superiority of our approaches over the state-of-the-art approaches.


2020 ◽  
Vol 36 (10) ◽  
pp. 3011-3017 ◽  
Author(s):  
Olga Mineeva ◽  
Mateo Rojas-Carulla ◽  
Ruth E Ley ◽  
Bernhard Schölkopf ◽  
Nicholas D Youngblut

Abstract Motivation Methodological advances in metagenome assembly are rapidly increasing in the number of published metagenome assemblies. However, identifying misassemblies is challenging due to a lack of closely related reference genomes that can act as pseudo ground truth. Existing reference-free methods are no longer maintained, can make strong assumptions that may not hold across a diversity of research projects, and have not been validated on large-scale metagenome assemblies. Results We present DeepMAsED, a deep learning approach for identifying misassembled contigs without the need for reference genomes. Moreover, we provide an in silico pipeline for generating large-scale, realistic metagenome assemblies for comprehensive model training and testing. DeepMAsED accuracy substantially exceeds the state-of-the-art when applied to large and complex metagenome assemblies. Our model estimates a 1% contig misassembly rate in two recent large-scale metagenome assembly publications. Conclusions DeepMAsED accurately identifies misassemblies in metagenome-assembled contigs from a broad diversity of bacteria and archaea without the need for reference genomes or strong modeling assumptions. Running DeepMAsED is straight-forward, as well as is model re-training with our dataset generation pipeline. Therefore, DeepMAsED is a flexible misassembly classifier that can be applied to a wide range of metagenome assembly projects. Availability and implementation DeepMAsED is available from GitHub at https://github.com/leylabmpi/DeepMAsED. Supplementary information Supplementary data are available at Bioinformatics online.


Author(s):  
D. C. Price ◽  
C. Flynn ◽  
A. Deller

Abstract Galactic electron density distribution models are crucial tools for estimating the impact of the ionised interstellar medium on the impulsive signals from radio pulsars and fast radio bursts. The two prevailing Galactic electron density models (GEDMs) are YMW16 (Yao et al. 2017, ApJ, 835, 29) and NE2001 (Cordes & Lazio 2002, arXiv e-prints, pp astro–ph/0207156). Here, we introduce a software package PyGEDM which provides a unified application programming interface for these models and the YT20 (Yamasaki & Totani 2020, ApJ, 888, 105) model of the Galactic halo. We use PyGEDM to compute all-sky maps of Galactic dispersion measure (DM) for YMW16 and NE2001 and compare the large-scale differences between the two. In general, YMW16 predicts higher DM values towards the Galactic anticentre. YMW16 predicts higher DMs at low Galactic latitudes, but NE2001 predicts higher DMs in most other directions. We identify lines of sight for which the models are most discrepant, using pulsars with independent distance measurements. YMW16 performs better on average than NE2001, but both models show significant outliers. We suggest that future campaigns to determine pulsar distances should focus on targets where the models show large discrepancies, so future models can use those measurements to better estimate distances along those line of sight. We also suggest that the Galactic halo should be considered as a component in future GEDMs, to avoid overestimating the Galactic DM contribution for extragalactic sources such as FRBs.


Sign in / Sign up

Export Citation Format

Share Document