Self-Organization of Cellular Units

Author(s):  
Timothy J. Mitchison ◽  
Christine M. Field

The purpose of this review is to explore self-organizing mechanisms that pattern microtubules (MTs) and spatially organize animal cell cytoplasm, inspired by recent experiments in frog egg extract. We start by reviewing conceptual distinctions between self-organizing and templating mechanisms for subcellular organization. We then discuss self-organizing mechanisms that generate radial MT arrays and cell centers in the absence of centrosomes. These include autocatalytic MT nucleation, transport of minus ends, and nucleation from organelles such as melanosomes and Golgi vesicles that are also dynein cargoes. We then discuss mechanisms that partition the cytoplasm in syncytia, in which multiple nuclei share a common cytoplasm, starting with cytokinesis, when all metazoan cells are transiently syncytial. The cytoplasm of frog eggs is partitioned prior to cytokinesis by two self-organizing modules, protein regulator of cytokinesis 1 (PRC1)-kinesin family member 4A (KIF4A) and chromosome passenger complex (CPC)-KIF20A. Similar modules may partition longer-lasting syncytia, such as early Drosophila embryos. We end by discussing shared mechanisms and principles for the MT-based self-organization of cellular units. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

Author(s):  
Marc-Olivier Coppens

A nature-inspired solution (NIS) methodology is proposed as a systematic platform for innovation and to inform transformative technology required to address Grand Challenges, including sustainable development. Scalability, efficiency, and resilience are essential to nature, as they are to engineering processes. They are achieved through underpinning fundamental mechanisms, which are grouped as recurring themes in the NIS approach: hierarchical transport networks, force balancing, dynamic self-organization, and ecosystem properties. To leverage these universal mechanisms, and incorporate them effectively into engineering design, adaptations may be needed to accommodate the different contexts of nature and engineering applications. Nature-inspired chemical engineering takes advantage of the NIS methodology for process intensification, as demonstrated here in fluidization, catalysis, fuel cell engineering, and membrane separations, where much higher performance is achieved by rigorously employing concepts optimized in nature. The same approach lends itself to other applications, from biomedical engineering to information technology and architecture. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering, Volume 12 is June 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Stuart P. Wilson

Self-organization describes a dynamic in a system whereby local interactions between individuals collectively yield global order, i.e. spatial patterns unobservable in their entirety to the individuals. By this working definition, self-organization is intimately related to chaos, i.e. global order in the dynamics of deterministic systems that are locally unpredictable. A useful distinction is that a small perturbation to a chaotic system causes a large deviation in its trajectory, i.e. the butterfly effect, whereas self-organizing patterns are robust to noise and perturbation. For many, self-organization is as important to the understanding of biological processes as natural selection. For some, self-organization explains where the complex forms that compete for survival in the natural world originate from. This chapter outlines some fundamental ideas from the study of simulated self-organizing systems, before suggesting how self-organizing principles could be applied through biohybrid societies to establish new theories of living systems.


2021 ◽  
Vol 7 (16) ◽  
pp. eabe3801
Author(s):  
Amanda J. Ackroyd ◽  
Gábor Holló ◽  
Haridas Mundoor ◽  
Honghu Zhang ◽  
Oleg Gang ◽  
...  

Chemical organization in reaction-diffusion systems offers a strategy for the generation of materials with ordered morphologies and structural hierarchy. Periodic structures are formed by either molecules or nanoparticles. On the premise of new directing factors and materials, an emerging frontier is the design of systems in which the precipitation partners are nanoparticles and molecules. We show that solvent evaporation from a suspension of cellulose nanocrystals (CNCs) and l-(+)-tartaric acid [l-(+)-TA] causes phase separation and precipitation, which, being coupled with a reaction/diffusion, results in rhythmic alternation of CNC-rich and l-(+)-TA–rich rings. The CNC-rich regions have a cholesteric structure, while the l-(+)-TA–rich bands are formed by radially aligned elongated bundles. The moving edge of the pattern propagates with a finite constant velocity, which enables control of periodicity by varying film preparation conditions. This work expands knowledge about self-organizing reaction-diffusion systems and offers a strategy for the design of self-organizing materials.


Author(s):  
Elliott S. Chiu ◽  
Sue VandeWoude

Endogenous retroviruses (ERVs) serve as markers of ancient viral infections and provide invaluable insight into host and viral evolution. ERVs have been exapted to assist in performing basic biological functions, including placentation, immune modulation, and oncogenesis. A subset of ERVs share high nucleotide similarity to circulating horizontally transmitted exogenous retrovirus (XRV) progenitors. In these cases, ERV–XRV interactions have been documented and include ( a) recombination to result in ERV–XRV chimeras, ( b) ERV induction of immune self-tolerance to XRV antigens, ( c) ERV antigen interference with XRV receptor binding, and ( d) interactions resulting in both enhancement and restriction of XRV infections. Whereas the mechanisms governing recombination and immune self-tolerance have been partially determined, enhancement and restriction of XRV infection are virus specific and only partially understood. This review summarizes interactions between six unique ERV–XRV pairs, highlighting important ERV biological functions and potential evolutionary histories in vertebrate hosts. Expected final online publication date for the Annual Review of Animal Biosciences, Volume 9 is February 16, 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2007 ◽  
Vol 11 (04) ◽  
pp. 277-286 ◽  
Author(s):  
Mihaela Carmen Balaban ◽  
Teodor Silviu Balaban

Two new zinc porphyrins having two meso-undecyl solubilizing groups and two meso-formyl groups or two meso-cyano groups have been prepared in good yields and were shown by stationary absorption and fluorescence spectroscopies to self-organize in nonpolar solvents such as n-heptane. The diformyl and dicyano recognition groups can thus successfully replace the hydroxy and carbonyl recognition groups encountered in the natural self-organizing bacteriochlorophylls and which were, up to now, the only recognition groups used in synthetic or semisynthetic bacteriochlorophyll mimics.


Author(s):  
Sarah Knuckey ◽  
Joshua D. Fisher ◽  
Amanda M. Klasing ◽  
Tess Russo ◽  
Margaret L. Satterthwaite

The human rights movement is increasingly using interdisciplinary, multidisciplinary, mixed-methods, and quantitative factfinding. There has been too little analysis of these shifts. This article examines some of the opportunities and challenges of these methods, focusing on the investigation of socioeconomic human rights. By potentially expanding the amount and types of evidence available, factfinding's accuracy and persuasiveness can be strengthened, bolstering rights claims. However, such methods can also present significant challenges and may pose risks in individual cases and to the human rights movement generally. Interdisciplinary methods can be costly in human, financial, and technical resources; are sometimes challenging to implement; may divert limited resources from other work; can reify inequalities; may produce “expertise” that disempowers rightsholders; and could raise investigation standards to an infeasible or counterproductive level. This article includes lessons learned and questions to guide researchers and human rights advocates considering mixed-methods human rights factfinding. Expected final online publication date for the Annual Review of Law and Social Science, Volume 17 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Vol 50 (1) ◽  
Author(s):  
Simeon Floyd

Conversation analysis is a method for the systematic study of interaction in terms of a sequential turn-taking system. Research in conversation analysis has traditionally focused on speakers of English, and it is still unclear to what extent the system observed in that research applies to conversation more generally around the world. However, as this method is now being applied to conversation in a broader range of languages, it is increasingly possible to address questions about the nature of interactional diversity across different speech communities. The approach of pragmatic typology first applies sequential analysis to conversation from different speech communities and then compares interactional patterns in ways analogous to how traditional linguistic typology compares morphosyntax. This article discusses contemporary literature in pragmatic typology, including single-language studies and multilanguage comparisons reflecting both qualitative and quantitative methods. This research finds that microanalysis of face-to-face interaction can identify both universal trends and culture-specific interactional tendencies. Expected final online publication date for the Annual Review of Anthropology, Volume 50 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Yonit Maroudas-Sacks ◽  
Kinneret Keren

Morphogenesis is one of the most remarkable examples of biological pattern formation. Despite substantial progress in the field, we still do not understand the organizational principles responsible for the robust convergence of the morphogenesis process across scales to form viable organisms under variable conditions. Achieving large-scale coordination requires feedback between mechanical and biochemical processes, spanning all levels of organization and relating the emerging patterns with the mechanisms driving their formation. In this review, we highlight the role of mechanics in the patterning process, emphasizing the active and synergistic manner in which mechanical processes participate in developmental patterning rather than merely following a program set by biochemical signals. We discuss the value of applying a coarse-grained approach toward understanding this complex interplay, which considers the large-scale dynamics and feedback as well as complementing the reductionist approach focused on molecular detail. A central challenge in this approach is identifying relevant coarse-grained variables and developing effective theories that can serve as a basis for an integrated framework for understanding this remarkable pattern-formation process. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Kristen Kobaly ◽  
Caroline S. Kim ◽  
Susan J. Mandel

Thyroid nodules are common in the general population, with higher prevalence in women and with advancing age. Approximately 5% of thyroid nodules are malignant; the majority of this subset represents papillary thyroid cancer. Ultrasonography is the standard technique to assess the underlying thyroid parenchyma, characterize the features of thyroid nodules, and evaluate for abnormal cervical lymphadenopathy. Various risk stratification systems exist to categorize the risk of malignancy based on the ultrasound appearance of a thyroid nodule. Nodules are selected for fine-needle aspiration biopsy on the basis of ultrasound features, size, and high-risk clinical history. Cytology results are classified by the Bethesda system into six categories ranging from benign to malignant. When cytology is indeterminate, molecular testing can further risk-stratify patients for observation or surgery. Surveillance is indicated for nodules with benign cytology, indeterminate cytology with reassuring molecular testing, or non-biopsied nodules without a benign sonographic appearance. Expected final online publication date for the Annual Review of Medicine, Volume 73 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Sign in / Sign up

Export Citation Format

Share Document