scholarly journals X-Ray Flow Visualization in Multiphase Flows

2021 ◽  
Vol 53 (1) ◽  
pp. 543-567
Author(s):  
Alberto Aliseda ◽  
Theodore J. Heindel

The use of X-ray flow visualization has brought a powerful new tool to the study of multiphase flows. Penetrating radiation can probe the spatial concentration of the different phases without the refraction, diffraction, or multiple scattering that usually produce image artifacts or reduce the signal-to-noise ratio below reliable values in optical visualization of multiphase flows; hence, X-ray visualization enables research into the three-dimensional (3D) structure of multiphase flows characterized by complex interfaces. With the commoditization of X-ray laboratory sources and wider access to synchrotron beam time for fluid mechanics, this novel imaging technique has shed light onto many multiphase flows of industrial and environmental interest under realistic 3D configurations and at realistic operating conditions (high Reynolds numbers and high volume fractions) that had defied study for decades. We present a broad survey of the most commonly studied multiphase flows (e.g., sprays, fluidized beds, bubble columns) in order to highlight the progress X-ray imaging has made in understanding the internal structure and multiphase coupling of these flows, and we discuss the potential of advanced tomography and time-resolved and particle tracking radiography for further study of multiphase flows.

Author(s):  
Jaap Brink ◽  
Wah Chiu

The crotoxin complex is a potent neurotoxin composed of a basic subunit (Mr = 12,000) and an acidic subunit (M = 10,000). The basic subunit possesses phospholipase activity whereas the acidic subunit shows no enzymatic activity at all. The complex's toxocity is expressed both pre- and post-synaptically. The crotoxin complex forms thin crystals suitable for electron crystallography. The crystals diffract up to 0.16 nm in the microscope, whereas images show reflections out to 0.39 nm2. Ultimate goal in this study is to obtain a three-dimensional (3D-) structure map of the protein around 0.3 nm resolution. Use of 100 keV electrons in this is limited; the unit cell's height c of 25.6 nm causes problems associated with multiple scattering, radiation damage, limited depth of field and a more pronounced Ewald sphere curvature. In general, they lead to projections of the unit cell, which at the desired resolution, cannot be interpreted following the weak-phase approximation. Circumventing this problem is possible through the use of 400 keV electrons. Although the overall contrast is lowered due to a smaller scattering cross-section, the signal-to-noise ratio of especially higher order reflections will improve due to a smaller contribution of inelastic scattering. We report here our preliminary results demonstrating the feasability of the data collection procedure at 400 kV.Crystals of crotoxin complex were prepared on carbon-covered holey-carbon films, quench frozen in liquid ethane, inserted into a Gatan 626 holder, transferred into a JEOL 4000EX electron microscope equipped with a pair of anticontaminators operating at −184°C and examined under low-dose conditions. Selected area electron diffraction patterns (EDP's) and images of the crystals were recorded at 400 kV and −167°C with dose levels of 5 and 9.5 electrons/Å, respectively.


Author(s):  
Theodore J. Heindel ◽  
Terrence C. Jensen ◽  
Joseph N. Gray

There are several methods available to visualize fluid flows when one has optical access. However, when optical access is limited to near the boundaries or not available at all, alternative visualization methods are required. This paper will describe flow visualization using an X-ray system that is capable of digital X-ray radiography, digital X-ray stereography, and digital X-ray computed tomography (CT). The unique X-ray flow visualization facility will be briefly described, and then flow visualization of various systems will be shown. Radiographs provide a two-dimensional density map of a three dimensional process or object. Radiographic images of various multiphase flows will be presented. When two X-ray sources and detectors simultaneously acquire images of the same process or object from different orientations, stereographic imaging can be completed; this type of imaging will be demonstrated by trickling water through packed columns and by absorbing water in a porous medium. Finally, local time-averaged phase distributions can be determined from X-ray computed tomography (CT) imaging, and this will be shown by comparing CT images from two different gas-liquid sparged columns.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Yan Ye ◽  
Da Yin ◽  
Bin Wang ◽  
Qingwen Zhang

We report the synthesis of three-dimensional Fe3O4/graphene aerogels (GAs) and their application for the removal of arsenic (As) ions from water. The morphology and properties of Fe3O4/GAs have been characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and superconducting quantum inference device. The 3D nanostructure shows that iron oxide nanoparticles are decorated on graphene with an interconnected network structure. It is found that Fe3O4/GAs own a capacity of As(V) ions adsorption up to 40.048 mg/g due to their remarkable 3D structure and existence of magnetic Fe3O4nanoparticles for separation. The adsorption isotherm matches well with the Langmuir model and kinetic analysis suggests that the adsorption process is pseudo-second-ordered. In addition to the excellent adsorption capability, Fe3O4/GAs can be easily and effectively separated from water, indicating potential applications in water treatment.


Author(s):  
Anatoly Frenkel

We discuss methods of Extended X-ray Absorption Fine-Structure (EXAFS) analysis that provide three-dimensional structural characterization of metal nanoparticles, both mono- and bi-metallic. For the bimetallic alloys, we use short range order measurements to discriminate between random and non-random inter-particle distributions of atoms. We also discuss the application of EXAFS to heterogeneous nanoparticle systems.


Crystals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 580
Author(s):  
Victor R.A. Dubach ◽  
Albert Guskov

X-ray crystallography and single-particle analysis cryogenic electron microscopy are essential techniques for uncovering the three-dimensional structures of biological macromolecules. Both techniques rely on the Fourier transform to calculate experimental maps. However, one of the crucial parameters, resolution, is rather broadly defined. Here, the methods to determine the resolution in X-ray crystallography and single-particle analysis are summarized. In X-ray crystallography, it is becoming increasingly more common to include reflections discarded previously by traditionally used standards, allowing for the inclusion of incomplete and anisotropic reflections into the refinement process. In general, the resolution is the smallest lattice spacing given by Bragg’s law for a particular set of X-ray diffraction intensities; however, typically the resolution is truncated by the user during the data processing based on certain parameters and later it is used during refinement. However, at which resolution to perform such a truncation is not always clear and this makes it very confusing for the novices entering the structural biology field. Furthermore, it is argued that the effective resolution should be also reported as it is a more descriptive measure accounting for anisotropy and incompleteness of the data. In single particle cryo-EM, the situation is not much better, as multiple ways exist to determine the resolution, such as Fourier shell correlation, spectral signal-to-noise ratio and the Fourier neighbor correlation. The most widely accepted is the Fourier shell correlation using a threshold of 0.143 to define the resolution (so-called “gold-standard”), although it is still debated whether this is the correct threshold. Besides, the resolution obtained from the Fourier shell correlation is an estimate of varying resolution across the density map. In reality, the interpretability of the map is more important than the numerical value of the resolution.


2012 ◽  
Vol 192-193 ◽  
pp. 179-184
Author(s):  
Kristina Maria Kareh ◽  
Peter D. Lee ◽  
Christopher M. Gourlay

Optimising semi-solid processing and accurately modelling semi-solid deformation requires a fundamental understanding of the globule-scale mechanisms that cause the macroscopic rheological response. In this work, apparatus and analysis techniques are being developed for the time-resolved, three-dimensional imaging of semi-solid alloy deformation. This paper overviews synchrotron X-ray tomography results on globular Al-15wt%Cu deformed at 0.7 solid fraction using extrusion. The globule-globule interactions in response to load were quantified in terms of the response of individual globules with respect to globule translation, rotation, and deformation. The potential of time-resolved X-ray tomography in the study of semi-solid alloy deformation is then discussed.


2020 ◽  
Vol 76 (9) ◽  
pp. 863-868
Author(s):  
Shao-Dong Li ◽  
Feng Su ◽  
Miao-Li Zhu ◽  
Li-Ping Lu

A new coordination polymer (CP), namely, poly[[diaquatris[μ2-1,4-bis(1H-imidazol-1-yl)benzene]bis[μ6-4-(2,4-dicarboxylatophenoxy)phthalato]tetracobalt(II)] hexahydrate], {[Co4(C16H6O9)2(C12H10N4)3(H2O)2]·6H2O} n , has been synthesized by solvothermal reaction. The CP was fully characterized by IR spectroscopy, elemental analysis, thermogravimetric analysis, and powder and single-crystal X-ray diffraction. It presents a three-dimensional (3D) structure based on tetranuclear CoII secondary building units (SBUs) with a tfz-d net and point symbol (43)2(46·618·84). The 4-(2,4-dicarboxyphenoxy)phthalic acid (H4dcppa) ligands are completely deprotonated and link {Co4(COO)4}4− SBUs into two-dimensional (2D) layers. Furthermore, adjacent layers are connected by 1,4-bis(1H-imidazol-1-yl)benzene (bib) ligands, giving rise to a 3D supramolecular architecture. Interestingly, there are numerous elliptical cavities in the CP where isolated unique discrete hexameric water clusters have been observed. The results of thermogravimetric and magnetic analyses are described in detail.


2012 ◽  
Vol 134 (6) ◽  
Author(s):  
G. Persico ◽  
A. Mora ◽  
P. Gaetani ◽  
M. Savini

In this paper the three-dimensional unsteady aerodynamics of a low aspect ratio, high pressure turbine stage are studied. In particular, the results of fully unsteady three-dimensional numerical simulations, performed with ANSYS-CFX, are critically evaluated against experimental data. Measurements were carried out with a novel three-dimensional fast-response pressure probe in the closed-loop test rig of the Laboratorio di Fluidodinamica delle Macchine of the Politecnico di Milano. An analysis is first reported about the strategy to limit the CPU and memory requirements while performing three-dimensional simulations of blade row interaction when the rotor and stator blade numbers are prime to each other. What emerges as the best choice is to simulate the unsteady behavior of the rotor alone by applying the stator outlet flow field as a rotating inlet boundary condition (scaled on the rotor blade pitch). Thanks to the reliability of the numerical model, a detailed analysis of the physical mechanisms acting inside the rotor channel is performed. Two operating conditions at different vane incidence are considered, in a configuration where the effects of the vortex-blade interaction are highlighted. Different vane incidence angles lead to different size, position, and strength of secondary vortices coming out from the stator, thus promoting different interaction processes in the subsequent rotor channel. However some general trends can be recognized in the vortex-blade interaction: the sense of rotation and the spanwise position of the incoming vortices play a crucial role on the dynamics of the rotor vortices, determining both the time-mean and the time-resolved characteristics of the secondary field at the exit of the stage.


1998 ◽  
Vol 54 (6) ◽  
pp. 1359-1366 ◽  
Author(s):  
Raimond B. G. Ravelli ◽  
Mia L. Raves ◽  
Zhong Ren ◽  
Dominique Bourgeois ◽  
Michel Roth ◽  
...  

Acetylcholinesterase (AChE) is one of nature's fastest enzymes, despite the fact that its three-dimensional structure reveals its active site to be deeply sequestered within the molecule. This raises questions with respect to traffic of substrate to, and products from, the active site, which may be investigated by time-resolved crystallography. In order to address one aspect of the feasibility of performing time-resolved studies on AChE, a data set has been collected using the Laue technique on a trigonal crystal of Torpedo californica AChE soaked with the reversible inhibitor edrophonium, using a total X-ray exposure time of 24 ms. Electron-density maps obtained from the Laue data, which are of surprisingly good quality compared with similar maps from monochromatic data, show essentially the same features. They clearly reveal the bound ligand, as well as a structural change in the conformation of the active-site Ser200 induced upon binding.


2017 ◽  
Vol 24 (3) ◽  
pp. 674-678 ◽  
Author(s):  
Shengqi Chu ◽  
Lirong Zheng ◽  
Pengfei An ◽  
Hui Gong ◽  
Tiandou Hu ◽  
...  

A new quick-scanning X-ray absorption fine-structure (QXAFS) system has been established on beamline 1W1B at the Beijing Synchrotron Radiation Facility. As an independent device, the QXAFS system can be employed by other beamlines equipped with a double-crystal monochromator to carry out quick energy scans and data acquisition. Both continuous-scan and trapezoidal-scan modes are available in this system to satisfy the time scale from subsecond (in the X-ray absorption near-edge structure region) to 1 min. Here, the trapezoidal-scan method is presented as being complementary to the continuous-scan method, in order to maintain high energy resolution and good signal-to-noise ratio. The system is demonstrated to be very reliable and has been combined with in situ cells to carry out time-resolved XAFS studies.


Sign in / Sign up

Export Citation Format

Share Document