Curcumin: Recent Advances in the Development of Strategies to Improve Oral Bioavailability

2019 ◽  
Vol 10 (1) ◽  
pp. 597-617 ◽  
Author(s):  
Katherine Z. Sanidad ◽  
Elvira Sukamtoh ◽  
Hang Xiao ◽  
David Julian McClements ◽  
Guodong Zhang

Substantial human and preclinical studies have shown that curcumin, a dietary compound from turmeric, has a variety of health-promoting effects including but not limited to antioxidant, antimicrobial, anti-inflammatory, and anticancer actions. However, curcumin has poor bioavailability, and high doses of curcumin are usually needed to exert its health-promoting effects in vivo, limiting its applications for disease prevention. Here, we discuss the health-promoting effects of curcumin, factors limiting its bioavailability, and strategies to improve its oral bioavailability.

2021 ◽  
Author(s):  
Ichiro Misumi ◽  
Zhucui Li ◽  
Lu Sun ◽  
Anshuman Das ◽  
Tomoyuki Shiota ◽  
...  

Iminosugar compounds are monosaccharide mimetics with broad but generally weak antiviral activities related to inhibition of enzymes involved in glycobiology. Miglustat (N-butyl-1-deoxynojirimycin), which is approved for treatment of lipid storage diseases in humans, and UV-4 (N-(9-methoxynonyl)-1-deoxynojirimycin), inhibit replication of hepatitis A virus (HAV) in cell culture (IC50 32.13 μM and 8.05 μM, respectively) by blocking the synthesis of gangliosides essential for HAV cell entry. We used a murine model of hepatitis A and targeted mass spectrometry to assess the capacity of these compounds to deplete hepatic gangliosides and modify the course of HAV infection in vivo. Miglustat, given by gavage to Ifnar1-/- mice (4800 mg/kg/day) depleted hepatic gangliosides by 69-75%, but caused substantial gastrointestinal toxicity and failed to prevent viral infection. UV-4, similarly administered in high doses (400 mg/kg/day), was well tolerated, but depleted hepatic gangliosides by only 20% after 14 days. UV-4 depletion of gangliosides varied by class. Several GM2 species were paradoxically increased, likely due to inhibition of β-glucosidases that degrade gangliosides. Both compounds enhanced, rather than reduced, virus replication. Nonetheless, both iminosugars had surprising anti-inflammatory effects, blocking the accumulation of inflammatory cells within the liver. UV-4 treatment also resulted in a decrease in serum alanine aminotransferase (ALT) elevations associated with acute hepatitis A. These anti-inflammatory effects may result from iminosugar inhibition of cellular α-glucosidases, leading to impaired maturation of glycan moieties of chemokine and cytokine receptors, and point to the potential importance of paracrine signaling in the pathogenesis of acute hepatitis A. IMPORTANCE Hepatitis A virus (HAV) is a common cause of viral hepatitis. Iminosugar compounds block its replication in cultured cells by inhibiting synthesis of gangliosides required for HAV cell entry, but have not been tested for their ability to prevent or treat hepatitis A in vivo. We show that high doses of the iminosugars miglustat and UV-4 fail to deplete gangliosides sufficiently to block HAV infection in mice lacking a key interferon receptor. These compounds nonetheless have striking anti-inflammatory effects on the HAV-infected liver, reducing the severity of hepatitis despite enhancing chemokine and cytokine expression resulting from hepatocyte-intrinsic antiviral responses. We propose that iminosugar inhibition of cellular α-glucosidases impairs maturation of glycan moieties of chemokine and cytokine receptors required for effective signaling. These data highlight the potential importance of paracrine signaling pathways in the inflammatory response to HAV, and add to our understanding of HAV pathogenesis in mice.


Nutrients ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1698
Author(s):  
Leticia Olivera-Castillo ◽  
George Grant ◽  
Nuvia Kantún-Moreno ◽  
Hirian A. Barrera-Pérez ◽  
Jorge Montero ◽  
...  

Sea cucumber body wall contains several naturally occurring bioactive components that possess health-promoting properties. Isostichopus badionotus from Yucatan, Mexico is heavily fished, but little is known about its bioactive constituents. We previously established that I. badionotus meal had potent anti-inflammatory properties in vivo. We have now screened some of its constituents for anti-inflammatory activity in vitro. Glycosaminoglycan and soluble protein preparations reduced 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced inflammatory responses in HaCaT cells while an ethanol extract had a limited effect. The primary glycosaminoglycan (fucosylated chondroitin sulfate; FCS) was purified and tested for anti-inflammatory activity in vivo. FCS modulated the expression of critical genes, including NF-ĸB, TNFα, iNOS, and COX-2, and attenuated inflammation and tissue damage caused by TPA in a mouse ear inflammation model. It also mitigated colonic colitis caused in mice by dextran sodium sulfate. FCS from I. badionotus of the Yucatan Peninsula thus had strong anti-inflammatory properties in vivo.


2017 ◽  
Vol 83 (7) ◽  
Author(s):  
T. Toshimitsu ◽  
S. Ozaki ◽  
J. Mochizuki ◽  
K. Furuichi ◽  
Y. Asami

ABSTRACT Studies on the health-promoting effects of lactic acid bacteria (LAB) are numerous, but few provide examples of the relationship between LAB function and culture conditions. We verified the effect of differences in culture conditions on Lactobacillus plantarum OLL2712 functionality; this strain exhibits anti-inflammatory activity and preventive effects against metabolic disorders. We measured interleukin-10 (IL-10) and IL-12 production in murine immune cells treated with OLL2712 cells prepared under various culture conditions. The results showed that the IL-10-inducing activities of OLL2712 cells on murine immune cells differed dramatically between OLL2712 groups at different culture phases and using different culture medium components, temperatures, and neutralizing pHs. In particular, exponential-phase cells had much more IL-10-inducing activity than stationary-phase cells. We confirmed that the Toll-like receptor 2 (TLR2) stimulation activity of OLL2712 cells depended on culture conditions in conjunction with IL-10-inducing activity. We also demonstrated functional differences by culture phases in vivo; OLL2712 cells at exponential phase had more anti-inflammatory activity and anti-metabolic-disorder effects on obese and diabetic mice than those by their stationary-phase counterparts. These results suggest that culture conditions affect the functionality of anti-inflammatory LAB. IMPORTANCE While previous studies demonstrated that culture conditions affected the immunomodulatory properties of lactic acid bacteria (LAB), few have comprehensively investigated the relationship between culture conditions and LAB functionality. In this study, we demonstrated several culture conditions of Lactobacillus plantarum OLL2712 for higher anti-inflammatory activity. We also showed that culture conditions concretely influenced the health-promoting functions of OLL2712 in vivo, particularly against metabolic disorders. Further, we characterized a novel mechanism by which changing LAB culture conditions affected immunomodulatory properties. Our results suggest that culture condition optimization is important for the production of LAB with anti-inflammatory activity.


2021 ◽  
Vol 9 (2) ◽  
pp. 005-017
Author(s):  
Ananda ◽  
Nabeela Tariq ◽  
Nosheen Rafiq ◽  
Shahzad Yousaf ◽  
Shabbar Abbas

Curcumin, a hydrophobic polyphenol found in rhizome of turmeric (curcuma longa) is one of the generally used spice in Asian countries. It has been found through studies that it has numerous health promoting properties and is proved to have curative properties as it possesses antioxidant and anti-inflammatory properties. Due to low oral bioavailability, decreased solubility, quick metabolism and removal from body, it is challenging to achieve maximum benefits from it. This study was aimed to enhance curcumin oral bioavailability by making use of nanoencapsulation technique. Biodegradable nanocapsules were prepared by consecutive addition of food grade polyelectrolytes including OSA-modified starch (PGU), as an emulsifier, chitosan and sodium-carboxymethylcellulose by ultrasonication technique using primary nanoemulsion as template. Results showed that the mean droplet diameter of nanocapsules was 160.57 ± 1.06 nm, the average PDI was 0.14 ± 0.01 and average charge was recorded as -24.43 ± 0.49 mV. Microscopy results showed that the nanostructures were spherical in shape having mean droplet diameter below 200nm. The nanocapsules assessment as a carrier in enhancing the in vivo oral bioavailability of curcumin was made; however, further studies and better tools are needed to clearly know the potential of developed nanosystem.


Bioimpacts ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 305-320 ◽  
Author(s):  
Shahram Emami ◽  
Mohammadreza Siahi-Shadbad ◽  
Khosro Adibkia ◽  
Mohammad Barzegar-Jalali

Introduction: Oral drug delivery is the most favored route of drug administration. However, poor oral bioavailability is one of the leading reasons for insufficient clinical efficacy. Improving oral absorption of drugs with low water solubility and/or low intestinal membrane permeability is an active field of research. Cocrystallization of drugs with appropriate coformers is a promising approach for enhancing oral bioavailability. Methods: In the present review, we have focused on recent advances that have been made in improving oral absorption through cocrystallization. The covered areas include supersaturation and its importance on oral absorption of cocrystals, permeability of cocrystals through membranes, drug-coformer pharmacokinetic (PK) interactions, conducting in vivo-in vitro correlations for cocrystals. Additionally, a discussion has been made on the integration of nanocrystal technology with supramolecular design. Marketed cocrystal products and PK studies in human subjects are also reported. Results: Considering supersaturation and consequent precipitation properties is necessary when evaluating dissolution and bioavailability of cocrystals. Appropriate excipients should be included to control precipitation kinetics and to capture solubility advantage of cocrystals. Beside to solubility, cocrystals may modify membrane permeability of drugs. Therefore, cocrystals can find applications in improving oral bioavailability of poorly permeable drugs. It has been shown that cocrystals may interrupt cellular integrity of cellular monolayers which can raise toxicity concerns. Some of coformers may interact with intestinal absorption of drugs through changing intestinal blood flow, metabolism and inhibiting efflux pumps. Therefore, caution should be taken into account when conducting bioavailability studies. Nanosized cocrystals have shown a high potential towards improving absorption of poorly soluble drugs. Conclusions: Cocrystals have found their way from the proof-of-principle stage to the clinic. Up to now, at least two cocrystal products have gained approval from regulatory bodies. However, there are remaining challenges on safety, predicting in vivo behavior and revealing real potential of cocrystals in the human.


2014 ◽  
Vol 112 (7) ◽  
pp. 1088-1097 ◽  
Author(s):  
Rob Mariman ◽  
Bas Kremer ◽  
Frits Koning ◽  
Lex Nagelkerken

Probiotic bacteria express a wide range of molecular structures that bind to receptors on innate immune cells and mediate health-promoting effects in the host. We have recently demonstrated in a colitis model that favourable effects of the probiotic mixture VSL#3 may in part be due to the suppression of intestinal chemokine expression. To obtain more insights into the underlying mechanisms, in the present study, we analysed the modulation of bone marrow-derived dendritic cells (BM-DC) from BALB/c (T helper (Th)2 biased) v. C57BL/6 (Th1 biased) mice. Our findings showed that VSL#3 differed from pure Toll-like receptor (TLR) ligands by inducing the production of various cytokines, including IL-12 p70 subunit (IL-12p70), IL-23 and IL-10. Dedicated TLR arrays were employed to profile mRNA from BM-DC cultured with lipopolysaccharide (LPS), VSL#3, or a combination of both. This approach led to the identification of (1) a cluster of genes that were up- or down-regulated, irrespective of the stimulus, (2) a cluster of genes that were synergistically up-regulated by LPS and VSL#3 in BM-DC from C57BL/6 mice, but not in those from BALB/c mice, and (3) a cluster of LPS-induced genes that were suppressed by VSL#3, in particular chemokine genes. These data show that this probiotic mixture has both pro- and anti-inflammatory effects on BM-DC and suggest that their immune-modulating properties in vivo may depend on the genetic background of the host.


2021 ◽  
Vol 7 (10) ◽  
pp. 834
Author(s):  
Aleksandar Pavic ◽  
Tatjana Ilic-Tomic ◽  
Jasmina Glamočlija

Severe drawbacks associated with the topical use of depigmenting agents in treatments of skin hyperigmentations impose a great demand for novel, effective, and safe melanogenesis inhibitors. Edible and medicinal mushrooms, known for numerous health-promoting properties, represent a rich reservoir of anti-melanogenic compounds, with the potential to be applied in preventing excessive skin pigmentation. Herein, using zebrafish (Danio rerio) as a preclinical animal model, we have demonstrated that ethanol extract of Laetiporus sulphureus (LSE) and Agaricus silvaticus (ASE) are not toxic at high doses up to 400–500 µg/mL while effectively inhibit melanogenesis in a dose-dependent manner. At depigmenting doses, the explored extracts showed no adverse effects on zebrafish embryos melanocytes. Even more, they did not provoke inflammation or neutropenia when applied at the highest dose ensuring almost complete the cells depigmentation. Since LSE and ASE have demonstrated significantly higher the therapeutic potential than kojic acid and hydroquinone, two well-known depigmenting agents, overall results of this study strongly suggest that the explored mushrooms extracts could be used as efficient and safe topical agents in treatments of skin hyperpigmentation disorders.


Planta Medica ◽  
2008 ◽  
Vol 74 (09) ◽  
Author(s):  
JH Lee ◽  
JH Lee ◽  
YM Lee ◽  
PN Kim ◽  
CS Jeong

Planta Medica ◽  
2010 ◽  
Vol 76 (12) ◽  
Author(s):  
J Bauer ◽  
F Dehm ◽  
A Koeberle ◽  
F Pollastro ◽  
G Appendino ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document