Effect of Gas Diffusion Process on Sensing Properties of SnO2 Thin Film Sensors in a SiO2 / SnO2 Layer‐Built Structure Fabricated by Sol‐Gel Process

1994 ◽  
Vol 141 (1) ◽  
pp. 220-225 ◽  
Author(s):  
Chang Dong Feng ◽  
Yasuhiro Shimizu ◽  
Makoto Egashira
1997 ◽  
Vol 69 (15) ◽  
pp. 3076-3080 ◽  
Author(s):  
Leonardo R. Allain ◽  
Karn Sorasaenee ◽  
Ziling Xue

2011 ◽  
Vol 50 (6) ◽  
pp. 591-600 ◽  
Author(s):  
B. Benrabah ◽  
A. Bouaza ◽  
A. Kadari ◽  
M.A. Maaref

2015 ◽  
Vol 15 (2) ◽  
pp. 1068-1076 ◽  
Author(s):  
Luca Giancaterini ◽  
Carlo Cantalini ◽  
Michela Cittadini ◽  
Marco Sturaro ◽  
Massimo Guglielmi ◽  
...  

1999 ◽  
Vol 606 ◽  
Author(s):  
Keishi Nishio ◽  
Jirawat Thongrueng ◽  
Yuichi Watanabe ◽  
Toshio Tsuchiya

AbstructWe succeeded in the preparation of strontium-barium niobate (Sr0.3Ba0.7Nb2O6 : SBN30)that have a tetragonal tungsten bronze type structure thin films on SrTiO3 (100), STO, or La doped SrTiO3 (100), LSTO, single crystal substrates by a spin coating process. LSTO substrate can be used for electrode. A homogeneous coating solution was prepared with Sr and Ba acetates and Nb(OEt)5 as raw materials, and acetic acid and diethylene glycol monomethyl ether as solvents. The coating thin films were sintered at temperature from 700 to 1000°C for 10 min in air. It was confirmed that the thin films on STO substrate sintered above 700°C were in the epitaxial growth because the 16 diffraction spots were observed on the pole figure using (121) reflection. The <130> and <310> direction of the thin film on STO were oriented with the c-axis in parallel to the substrate surface. However, the diffraction spots of thin film on LSTO substrate sintered at 700°C were corresponds to the expected pattern for (110).


Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 200
Author(s):  
Do Won Kim ◽  
Hyeon Joong Kim ◽  
Changmin Lee ◽  
Kyoungdu Kim ◽  
Jin-Hyuk Bae ◽  
...  

Sol-gel processed SnO2 thin-film transistors (TFTs) were fabricated on SiO2/p+ Si substrates. The SnO2 active channel layer was deposited by the sol-gel spin coating method. Precursor concentration influenced the film thickness and surface roughness. As the concentration of the precursor was increased, the deposited films were thicker and smoother. The device performance was influenced by the thickness and roughness of the SnO2 active channel layer. Decreased precursor concentration resulted in a fabricated device with lower field-effect mobility, larger subthreshold swing (SS), and increased threshold voltage (Vth), originating from the lower free carrier concentration and increase in trap sites. The fabricated SnO2 TFTs, with an optimized 0.030 M precursor, had a field-effect mobility of 9.38 cm2/Vs, an SS of 1.99, an Ion/Ioff value of ~4.0 × 107, and showed enhancement mode operation and positive Vth, equal to 9.83 V.


Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1629
Author(s):  
Hyeon-Joong Kim ◽  
Do-Won Kim ◽  
Won-Yong Lee ◽  
Sin-Hyung Lee ◽  
Jin-Hyuk Bae ◽  
...  

In this study, sol–gel-processed Li-doped SnO2-based thin-film transistors (TFTs) were fabricated on SiO2/p+ Si substrates. The influence of Li dopant (wt%) on the structural, chemical, optical, and electrical characteristics was investigated. By adding 0.5 wt% Li dopant, the oxygen vacancy formation process was successfully suppressed. Its smaller ionic size and strong bonding strength made it possible for Li to work as an oxygen vacancy suppressor. The fabricated TFTs consisting of 0.5 wt% Li-doped SnO2 semiconductor films delivered the field-effect mobility in a 2.0 cm2/Vs saturation regime and Ion/Ioff value of 1 × 108 and showed enhancement mode operation. The decreased oxygen vacancy inside SnO2 TFTs with 0.5 wt% Li dopant improved the negative bias stability of TFTs.


Sign in / Sign up

Export Citation Format

Share Document