Characterization and Electrochemical Investigations of Polypyrrole/Aluminum Flake Composite Pigments on AA 2024-T3 Substrate

2019 ◽  
Vol 41 (15) ◽  
pp. 75-89 ◽  
Author(s):  
Niteen Jadhav ◽  
Christopher A. Vetter ◽  
Victoria J. Gelling
Keyword(s):  
Aa 2024 ◽  
2010 ◽  
Vol 52 (4) ◽  
pp. 252-256 ◽  
Author(s):  
Serkan Özel ◽  
Hüseyin Turhan

2020 ◽  
Vol 326 ◽  
pp. 08005
Author(s):  
Mete Demirorer ◽  
Wojciech Suder ◽  
Supriyo Ganguly ◽  
Simon Hogg ◽  
Hassam Naeem

An innovative process design, to avoid thermal degradation during autogenous fusion welding of high strength AA 2024-T4 alloy, based on laser beam welding, is being developed. A series of instrumented laser welds in 2 mm thick AA 2024-T4 alloys were made with different processing conditions resulting in different thermal profiles and cooling rates. The welds were examined under SEM, TEM and LOM, and subjected to micro-hardness examination. This allowed us to understand the influence of cooling rate, peak temperature, and thermal cycle on the growth of precipitates, and related degradation in the weld and heat affected area, evident as softening. Although laser beam welding allows significant reduction of heat input, and higher cooling rates, as compared to other high heat input welding processes, this was found insufficient to completely supress coarsening of precipitate in HAZ. To understand the required range of thermal cycles, additional dilatometry tests were carried out using the same base material to understand the time-temperature relationship of precipitate formation. The results were used to design a novel laser welding process with enhanced cooling, such as with copper backing bar and cryogenic cooling.


2017 ◽  
Vol 126 ◽  
pp. 55-68 ◽  
Author(s):  
Mirjana Rodošek ◽  
Matjaž Koželj ◽  
Lidija Slemenik Perše ◽  
Romana Cerc Korošec ◽  
Miran Gaberšček ◽  
...  
Keyword(s):  

Langmuir ◽  
2007 ◽  
Vol 23 (10) ◽  
pp. 5505-5514 ◽  
Author(s):  
Mojca Fir ◽  
Boris Orel ◽  
Angela Šurca Vuk ◽  
Aljaž Vilčnik ◽  
Robi Ješe ◽  
...  

2006 ◽  
Vol 519-521 ◽  
pp. 949-954 ◽  
Author(s):  
Beong Bok Hwang ◽  
J.H. Shim ◽  
Jung Min Seo ◽  
H.S. Koo ◽  
J.H. Ok ◽  
...  

This paper is concerned with the analysis of the forming load characteristics of a forward-backward can extrusion in both combined and sequence operation. A commercially available finite element program, which is coded in the rigid-plastic finite element method, has been employed to investigate the forming load characteristics. AA 2024 aluminum alloy is selected as a model material. The analysis in the present study is extended to the selection of press frame capacity for producing efficiently final product at low cost. The possible extrusion processes to shape a forward-backward can component with different outer diameters are categorized to estimate quantitatively the force requirement for forming forward-backward can part, forming energy, and maximum pressure exerted on the die-material interfaces, respectively. The categorized processes are composed of combined and/or some basic extrusion processes such as sequence operation. Based on the simulation results about forming load characteristics, the frame capacity of a mechanical press of crank-drive type suitable for a selected process could be determined along with securing the load capacity and with considering productivity. In addition, it is suggested that different load capacities be selected for different dimensions of a part such as wall thickness in forward direction and etc. It is concluded quantitatively from the simulation results that the combined operation is superior to sequence operation in terms of relatively low forming load and thus it leads to low cost for forming equipments. However, it is also known from the simulation results that the precise control of dimensional accuracy is not so easy in combined operation. The results in this paper could be a good reference for analysis of forming process for complex parts and selection of proper frame capacity of a mechanical press to achieve low production cost and thus high productivity.


2019 ◽  
Vol 467-468 ◽  
pp. 1011-1032 ◽  
Author(s):  
Tianhui Hu ◽  
Hongwei Shi ◽  
Dongcen Hou ◽  
Tao Wei ◽  
Shihua Fan ◽  
...  

2010 ◽  
Vol 638-642 ◽  
pp. 1203-1208 ◽  
Author(s):  
Simon Larose ◽  
Laurent Dubourg ◽  
C. Perron ◽  
Mohammad Jahazi ◽  
Priti Wanjara

Friction stir welding (FSWing) induces residual stresses and distortions in welded structures. Such residual stresses reduce the fatigue life of welded components, while the induced distortions prevent the welding of large or thin components. In the present study, needle peening was used to induce additional residual stresses in 2.3-mm thick (FSWed) aluminum alloy (AA) 2024-T3 sheets. This was done with the objective to counterbalance the welding-induced stresses and thus reduce the overall stresses and distortions. The needle peening process, which stems from shot peening, consists of hammering a surface using cylindrical spherical ended shots sliding back and forth in a treatment head. An instrumented needle peening machine was used to carry out peening on as-received (or bare) and bead-on-plate FSWed AA2024-T3 material. In both cases, the width of the peening area corresponded to that of a typical weld. The influence of the peening process parameters such as needle size, applied power and travel speed on the surface quality and magnitude of the induced distortions were evaluated. The results indicate that, by increasing the needle diameter from 1.2 mm to 2.0 mm, the peening-induced deflection on bare sheet material increased by an average value of 27% while the roughness average, Ra, decreased by an average value of 47%. It was also found that a surface finish qualitatively similar to that of conventional shot peening could be obtained by using appropriate needle peening trajectories. Finally, needle peening with an applied power of 10% was sufficient for eliminating 37% of the welding-induced transverse curvature and 82% of the welding-induced longitudinal curvature.


2005 ◽  
Author(s):  
Antonio D. Ludovico ◽  
Giuseppe Daurelio ◽  
L. A. C. De Filippis ◽  
A. Scialpi ◽  
F. Squeo

Sign in / Sign up

Export Citation Format

Share Document