Epoxy Casting Systems with Harmless Hardeners for Outdoor Applications

2021 ◽  
Vol 105 (1) ◽  
pp. 647-653
Author(s):  
Ludek Horak ◽  
Jiri Kazelle ◽  
Pavel Safl

Presented thesis is focused on studying of electro-insulating casting systems based on epoxy resin. The aim of the article is to acquaint the reader with the development of this systems – epoxy resin with hardeners that comply with REACH authorization. The temperature and frequency dependence of complex permittivity, complex electric modulus, loss factor and inner and surface resistivity of the given samples are investigated.

2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
Abubakar Dantani Meli ◽  
Zulkifly Abbas ◽  
Mohd Hafiz Mohd Zaid ◽  
Nor Azowa Ibrahim

RS-4050 is a rigid epoxy based magnetic castable microwave absorbing material; it has been used in many areas of waveguide application as a microwave waveguide terminations and dummy loads. In recent years, there is a demand for composites material with lower dielectric constant higher loss factor for microwave application. This research, the effect of soda lime silica (SLS) on structural and complex permittivity of soda lime silica-high density polyethylene (SLS-HDPE) composites was conducted in order to explore the possibility of substituting RS-4050 with SLS-HDPE composites as a microwave waveguide terminations and dummy loads. Elemental weight composition of the SLS glass powder and HDPE was identified through scaling of different percentage of SLS and HDPE. X-ray diffraction (XRD) was used to investigate the crystallinity behavior of SLS-HDPE composites. The proposed SLS-HDPE composites material was studied at frequencies 8 to 12 GHz. The study was conducted using waveguide Agilent N5230A PNA technique. The effect of microwave frequency on complex permittivity properties for SLS-HDPE composites of different percentages of SLS and HDPE (10% SLS-90% HDPE, 20% SLS-80% HDPE, 30% SLS-70% HDPE, 40% SLS-60% HDPE, and 50% SLS-50% HDPE) were investigated. Results showed the diffraction patterns reveal good amorphous quality with a genuinely properties structure. The microwave frequency and composites percentages significantly influenced the complex permittivity (real and imaginary) properties of the composites. Moreover, the complex permittivity increased as the percentage of SLS filler increased in the host matrix HDPE as a result of increased in composite density due to less volume being occupied by the filler as the percentage increased. The complex permittivity of the smallest and largest percentages of SLS (10% and 50%) was (2.67-j0.05) and (3.45-j0.35), respectively. The study revealed that the best sample for waveguide application as microwave terminator is 50% SLS as it has the highest dielectric constant, highest loss factor, and highest loss tangent as compared to 10% SLS to 40% SLS. Also 50% SLS has the highest absorption properties as compare to 10% SLS, 20% SLS, 30% SLS, or 40% SLS. The XRD physical structure of the SLS-HDPE composites revealed the absorption characteristics of different percentages of the materials. The SLS-HDPE composites can be applied in the area of waveguide as a microwave waveguide terminations and dummy loads.


The greatest dealon the article have to approach the experimental design, dimensions and formulations in Silicon Carbide and Epoxy Matrix Radiator. The experiment prepared as per the fabrication chart behind that known about the characterization of material and proposal layout of fabrication work. Among the research work, concentrated the formation of silicon carbide epoxy matrix radiator in the given configuration and composition prepared as a high thermal conductive Epoxy resin is mixed at the ratio of 20wt% of epoxy resin 80% of Silicon Carbide. As silicon carbide has higher thermal conductivity and lowerthermal expansion than Aluminium and then the experimented result determined by the rate of heat transfer analysis such as the mode of heat transfer like Conduction, Convection and Radiation of the materials (Aluminium 6061 and Sic + Epoxy Resin). The following heat transfer characteristics formulated and calculated as per the given design, dimension and configuration of the materials.


e-Polymers ◽  
2006 ◽  
Vol 6 (1) ◽  
Author(s):  
Newton Luiz Dias Filho ◽  
Hermes Adolfo de Aquino

AbstractNon-isothermal dielectric analysis (DEA) and differential scanning calorimetry (DSC) techniques were used to study the epoxy nanocomposites prepared by reacting 1,3,5,7,9,11,13,15-octa[dimethylsiloxypropylglycidylether] pentaciclo [9.5.1.13,9.15,15 .17,13] octasilsesquioxane (ODPG) with methylenedianiline (MDA). Loss factor (ε”) and activation energy were calculated by DEA. The relationships between the loss factor, the activation energy, the structure of the network, and the mechanical properties were investigated. Activation energies determined by DEA and DSC, heat of polymerization, fracture toughness and tensile modulus show the same profile for mechanical properties with respect to ODPG content.


2010 ◽  
Vol 26-28 ◽  
pp. 356-359 ◽  
Author(s):  
Xiao Feng Sun ◽  
Shi Ning Ma ◽  
Jia Wu He ◽  
Nai Shu Zhu

Nano-Fe particles were selected as microwave-absorber, and added in the epoxy resin. Epoxy resin/nano-Fe composite materials were cured by microwave irradiation and heating. Vector network analysis, dynamic mechanical analysis(DMA) and scanning electron microscope(SEM) were used to study the curing behaviors of composite materials under the different curing ways. Results show that the dielectric constant(εr) and the dielectric loss factor(tanδ) of the epoxy resin increased obviously when nano-Fe particles were added, and microwave absorption properties of epoxy resin/nano-Fe composite materials improved greatly with increasing contents of nano-Fe particles. DMA results indicate that the storage modulus (E’) and glass transition temperature(Tg) of epoxy resin samples with nano-Fe particles were higher than those without nano-Fe particles. The microstructure and phase composition of the samples were studied by SEM and EDX. Results show that nano-Fe particles were homogeneously dispersed in the epoxy resin matrix under microwave irradiation, which implies improved strength and toughness of epoxy resin/nano-Fe composite materials.


Sign in / Sign up

Export Citation Format

Share Document