DEA and DSC study of cubic silsesquioxane epoxy resin nanocomposites

e-Polymers ◽  
2006 ◽  
Vol 6 (1) ◽  
Author(s):  
Newton Luiz Dias Filho ◽  
Hermes Adolfo de Aquino

AbstractNon-isothermal dielectric analysis (DEA) and differential scanning calorimetry (DSC) techniques were used to study the epoxy nanocomposites prepared by reacting 1,3,5,7,9,11,13,15-octa[dimethylsiloxypropylglycidylether] pentaciclo [9.5.1.13,9.15,15 .17,13] octasilsesquioxane (ODPG) with methylenedianiline (MDA). Loss factor (ε”) and activation energy were calculated by DEA. The relationships between the loss factor, the activation energy, the structure of the network, and the mechanical properties were investigated. Activation energies determined by DEA and DSC, heat of polymerization, fracture toughness and tensile modulus show the same profile for mechanical properties with respect to ODPG content.

MRS Advances ◽  
2017 ◽  
Vol 2 (49) ◽  
pp. 2689-2694
Author(s):  
Karla A. Gaspar-Ovalle ◽  
Juan V. Cauich-Rodriguez ◽  
Armando Encinas

ABSTRACTNanofibrous mats of poly ε-caprolactone (PCL) were fabricated by electrospinning. The nanofiber structures were investigated and characterized by scanning electron microscope, differential scanning calorimetry, thermogravimetric analysis, dynamic mechanical analysis, static water-contact-angle analysis and mechanical properties. The results showed that the nanofibrous PCL is an ideal biopolymer for cell adhesion, owing to its biocompatibility, biodegradability, structural stability and mechanical properties. Differential scanning calorimetry results showed that the fibrous structure of PCL does not alter its crystallinity. Studies of the mechanical properties, wettability and degradability showed that the structure of the electrospun PCL improved the tensile modulus, tensile strength, wettability and biodegradability of the nanotemplates. To evaluate the nanofibrous structure of PCL on cell adhesion, osteoblasts cells were seeded on these templates. The results showed that both adhesion and proliferation of the cells is viable on these electrospun PCL membranes. Thus electrospinning is a relatively inexpensive and scalable manufacturing technique for submicron to nanometer diameter fibers, which can be of interest in the commodity industry.


2014 ◽  
Vol 936 ◽  
pp. 28-33 ◽  
Author(s):  
Wei Xing Deng ◽  
Yuan Wei Zhong ◽  
Jie Qin ◽  
Xue Bing Huang ◽  
Jin Wen Peng

A new epoxy resin based on dichlorosilane and 9,9-bis (4-hydroxyphenyl) fluorene was synthesized to produce a highly heat-resistant network. The chemical structure was characterized with FTIR spectroscopy and 1H-NMR. 4-4′-Diaminodiphenylsulfone (DDS) was used as the curing agent. The curing kinetics of different epoxy/DDS systems were investigated using non-isothermal differential scanning calorimetry (DSC). The results showed that the values of activation energy (E) were affected by the chemical structure of epoxy resin, and BPEBF exhibited lower curing reactivity towards DDS compared to E-51.


2017 ◽  
Vol 67 (6) ◽  
pp. 617 ◽  
Author(s):  
Suresh Kumar Jangid ◽  
Mrityunjay Kumar Singh ◽  
Vasant Jadavji Solanki ◽  
Rabindra Kumar Sinha ◽  
Krothapalli Prabhakara Subrahmania Murthy

<p class="p1">The effect of replacing hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) in HTPB-binder on the performance, sensitivity, thermal, and mechanical properties of the sheet explosive formulation has been studied. The maximum loading of HMX was achieved up to 78 per cent in HTPB-binder system. The velocity of detonation (VOD) of HMX-based sheet explosive was observed about 7300 m/s which is marginally higher than existing RDX-based sheet explosive formulation (RDX/HTPB-binder, 80/20). The VOD trends were verified by theoretical calculation by BKW code using FORTRAN executable program. The thermal decomposition kinetics of sheet explosive formulations was investigated by differential scanning calorimetry. The activation energy for sheet explosive formulation HMX/HTPB-binder (78/22) was calculated using Kissinger kinetic method and found to be 170.08 kJ/mol, infer that sheet explosive formulation is thermally stable.</p>


CONVERTER ◽  
2021 ◽  
pp. 476-481
Author(s):  
Tiantian Feng, Et al.

In this article,polyethersulfone and flourene-coating epoxy resin were utilized tomodify both the toughness and the mechanical properties of traditional epoxy resins. The cure kineticsand the thermal stabilityof the resultedblends were tested by differential scanning calorimetry technology and thermogravimetric analysis, respectively. Additionally, the mechanical properties of resulted thermosets were discussed after tested by Dynamic Thermomechanical Analyzer.When compared to the traditional epoxides, the obtained blends exhibit much better heat resistance, thermal stability and mechanical properties.


2011 ◽  
Vol 109 ◽  
pp. 170-173
Author(s):  
Li Huo ◽  
Yong Gang Du ◽  
Yong Mei Wang

The cure kinetics for bisphenol A epoxy resin (BPAER) modified by liquid crystalline Sulfonyl bis(4,1-phenylene)bis[4-(2,3-epoxypropyloxy)benzoate](p-SBPEPB), with3-methyl-tetrahy drophthalic anhydride (MeTHPA) as a curing agent, were investigated by nonisothermal differential scanning calorimetry (DSC) method. The effect of the different liquid crystalline contents and activation energy (Ea) on curing reaction were discussed. The glass transition temperature (Tg) and mechanical property were charactered, The results show that the better content is about 10wt%.


2021 ◽  
pp. 002199832199945
Author(s):  
Jong H Eun ◽  
Bo K Choi ◽  
Sun M Sung ◽  
Min S Kim ◽  
Joon S Lee

In this study, carbon/epoxy composites were manufactured by coating with a polyamide at different weight percentages (5 wt.%, 10 wt.%, 15 wt.%, and 20 wt.%) to improve their impact resistance and fracture toughness. The chemical reaction between the polyamide and epoxy resin were examined by fourier transform infrared spectroscopy, differential scanning calorimetry and X-ray photoelectron spectroscopy. The mechanical properties and fracture toughness of the carbon/epoxy composites were analyzed. The mechanical properties of the carbon/epoxy composites, such as transverse flexural tests, longitudinal flexural tests, and impact tests, were investigated. After the impact tests, an ultrasonic C-scan was performed to reveal the internal damage area. The interlaminar fracture toughness of the carbon/epoxy composites was measured using a mode I test. The critical energy release rates were increased by 77% compared to the virgin carbon/epoxy composites. The surface morphology of the fractured surface was observed. The toughening mechanism of the carbon/epoxy composites was suggested based on the confirmed experimental data.


2021 ◽  
pp. 095400832110055
Author(s):  
Yang Wang ◽  
Yuhui Zhang ◽  
Yuhan Xu ◽  
Xiucai Liu ◽  
Weihong Guo

The super-tough bio-based nylon was prepared by melt extrusion. In order to improve the compatibility between bio-based nylon and elastomer, the elastomer POE was grafted with maleic anhydride. Scanning Electron Microscopy (SEM) and Thermogravimetric Analysis (TGA) were used to study the compatibility and micro-distribution between super-tough bio-based nylon and toughened elastomers. The results of mechanical strength experiments show that the 20% content of POE-g-MAH has the best toughening effect. After toughening, the toughness of the super-tough nylon was significantly improved. The notched impact strength was 88 kJ/m2 increasing by 1700%, which was in line with the industrial super-tough nylon. X-ray Diffraction (XRD) and Differential Scanning Calorimetry (DSC) were used to study the crystallization behavior of bio-based PA56, and the effect of bio-based PA56 with high crystallinity on mechanical properties was analyzed from the microstructure.


Sign in / Sign up

Export Citation Format

Share Document