scholarly journals Enhancing Performance of Anode-Free Li-Metal Batteries by Addition of Ceramic Nanoparticles: Part I.

Author(s):  
tzach mukra ◽  
Roy marrache ◽  
Pini Shekhter ◽  
Emanuel Peled
2015 ◽  
Vol 21 (42) ◽  
pp. 6165-6188 ◽  
Author(s):  
Shindu Thomas ◽  
Bentham Science Publisher Harshita ◽  
Pawan Mishra ◽  
Sushama Talegaonkar

2021 ◽  
Vol 68 (1) ◽  
Author(s):  
R. Vidhya ◽  
T. Balakrishnan ◽  
B. Suresh Kumar

AbstractNanofluids are emerging two-phase thermal fluids that play a vital part in heat exchangers owing to its heat transfer features. Ceramic nanoparticles aluminium oxide (Al2O3) and silicon dioxide (SiO2) were produced by the sol-gel technique. Characterizations have been done through powder X-ray diffraction spectrum and scanning electron microscopy analysis. Subsequently, few volume concentrations (0.0125–0.1%) of hybrid Al2O3–SiO2 nanofluids were formulated via dispersing both ceramic nanoparticles considered at 50:50 ratio into base fluid combination of 60% distilled water (W) with 40% ethylene glycol (EG) using an ultrasonic-assisted two-step method. Thermal resistance besides heat transfer coefficient have been examined with cylindrical mesh heat pipe reveals that the rise of power input decreases the thermal resistance and inversely increases heat transfer coefficient about 5.54% and 43.16% respectively. Response surface methodology (RSM) has been employed for the investigation of heat pipe experimental data. The significant factors on the various convective heat transfer mechanisms have been identified using the analysis of variance (ANOVA) tool. Finally, the empirical models were developed to forecast the heat transfer mechanisms by regression analysis and validated with experimental data which exposed the models have the best agreement with experimental results.


2014 ◽  
Vol 25 (48) ◽  
pp. 485101 ◽  
Author(s):  
Amrit Bagchi ◽  
Sai Rama Krishna Meka ◽  
Badari Narayana Rao ◽  
Kaushik Chatterjee

2015 ◽  
Vol 27 ◽  
pp. 02004
Author(s):  
Felipe Silva Bellucci ◽  
Jeferson Camargo Fukushima ◽  
Josué de Moraes ◽  
Marcos Augusto Lima Nobre ◽  
Amarildo Tabone Paschoalini ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2773
Author(s):  
Ion Smaranda ◽  
Andreea Nila ◽  
Paul Ganea ◽  
Monica Daescu ◽  
Irina Zgura ◽  
...  

This paper prepared composites under the free membranes form that are based on thermoplastic polymers of the type of polyurethane (TPU) and polyolefin (TPO), which are blended in the weight ratio of 2:1, and ceramic nanoparticles (CNs) such as BaSrTiO3 and SrTiO3. The structural, optical, and conductive properties of these new composite materials are reported. The X-ray diffraction studies highlight a cubic crystalline structure of these CNs. The main variations in the vibrational properties of the TPU:TPO blend induced by CNs consist of the following: (i) the increase in the intensity of the Raman line of 1616 cm−1; (ii) the down-shift of the IR band from 800 to 791 cm−1; (iii) the change of the ratio between the absorbance of IR bands localized in the spectral range 950–1200 cm−1; and (iv) the decrease in the absorbance of the IR band from 1221 cm−1. All these variations were correlated with a preferential adsorption of thermoplastic polymers on the CNs surface. A photoluminescence (PL) quenching process of thermoplastic polymers is demonstrated to occur in the presence of CNs. The anisotropic PL measurements have highlighted a change in the angle of the binding of the TPU:TPO blend, which varies from 23.7° to ≈49.3° and ≈53.4°, when the concentration of BaSrTiO3 and SrTiO3 CNs, respectively, is changed from 0 to 25 wt. %. Using dielectric spectroscopy, two mechanisms are invoked to take place in the case of the composites based on TPU:TPO blends and CNs, i.e., one regarding the type of the electrical conduction and another specifying the dielectric–dipolar relaxation processes.


Sign in / Sign up

Export Citation Format

Share Document