scholarly journals The Influence of the Ceramic Nanoparticles on the Thermoplastic Polymers Matrix: Their Structural, Optical, and Conductive Properties

Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2773
Author(s):  
Ion Smaranda ◽  
Andreea Nila ◽  
Paul Ganea ◽  
Monica Daescu ◽  
Irina Zgura ◽  
...  

This paper prepared composites under the free membranes form that are based on thermoplastic polymers of the type of polyurethane (TPU) and polyolefin (TPO), which are blended in the weight ratio of 2:1, and ceramic nanoparticles (CNs) such as BaSrTiO3 and SrTiO3. The structural, optical, and conductive properties of these new composite materials are reported. The X-ray diffraction studies highlight a cubic crystalline structure of these CNs. The main variations in the vibrational properties of the TPU:TPO blend induced by CNs consist of the following: (i) the increase in the intensity of the Raman line of 1616 cm−1; (ii) the down-shift of the IR band from 800 to 791 cm−1; (iii) the change of the ratio between the absorbance of IR bands localized in the spectral range 950–1200 cm−1; and (iv) the decrease in the absorbance of the IR band from 1221 cm−1. All these variations were correlated with a preferential adsorption of thermoplastic polymers on the CNs surface. A photoluminescence (PL) quenching process of thermoplastic polymers is demonstrated to occur in the presence of CNs. The anisotropic PL measurements have highlighted a change in the angle of the binding of the TPU:TPO blend, which varies from 23.7° to ≈49.3° and ≈53.4°, when the concentration of BaSrTiO3 and SrTiO3 CNs, respectively, is changed from 0 to 25 wt. %. Using dielectric spectroscopy, two mechanisms are invoked to take place in the case of the composites based on TPU:TPO blends and CNs, i.e., one regarding the type of the electrical conduction and another specifying the dielectric–dipolar relaxation processes.

Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 753
Author(s):  
M. Baibarac ◽  
A. Nila ◽  
I. Smaranda ◽  
M. Stroe ◽  
L. Stingescu ◽  
...  

In this work, new films containing composite materials based on blends of thermoplastic polymers of the polyurethane (TPU) and polyolefin (TPO) type, in the absence and presence of BaTiO3 nanoparticles (NPs) with the size smaller 100 nm, were prepared. The vibrational properties of the free films depending on the weight ratio of the two thermoplastic polymers were studied. Our results demonstrate that these films are optically active, with strong, broad, and adjustable photoluminescence by varying the amount of TPU. The crystalline structure of BaTiO3 and the influence of thermoplastic polymers on the crystallization process of these inorganic NPs were determined by X-ray diffraction (XRD) studies. The vibrational changes induced in the thermoplastic polymer’s matrix of the BaTiO3 NPs were showcased by Raman scattering and FTIR spectroscopy. The incorporation of BaTiO3 NPs in the matrix of thermoplastic elastomers revealed the shift dependence of the photoluminescence (PL) band depending on the BaTiO3 NP concentration, which was capable of covering a wide visible spectral range. The dependencies of the dielectric relaxation phenomena with the weight of BaTiO3 NPs in thermoplastic polymers blends were also demonstrated.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1719
Author(s):  
Patryk Fryń ◽  
Sebastian Lalik ◽  
Natalia Górska ◽  
Agnieszka Iwan ◽  
Monika Marzec

The main goal of this paper was to study the dielectric properties of hybrid binary and ternary composites based on biodegradable polymer Ecoflex®, single walled carbon nanotubes (SWCN), and liquid crystalline 4′-pentyl-4-biphenylcarbonitrile (5CB) compound. The obtained results were compared with other created analogically to Ecoflex®, hybrid layers based on biodegradable polymers such as L,D-polylactide (L,D-PLA) and polycaprolactone (PCL). Frequency domain dielectric spectroscopy (FDDS) results were analyzed taking into consideration the amount of SWCN, frequency, and temperature. For pure Ecoflex®, two relaxation processes (α and β) were identified. It was shown that the SWCN admixture (in the weight ratio 10:0.01) did not change the properties of the Ecoflex® layer, while in the case of PCL and L,D-PLA, the layers became conductive. The dielectric constant increased with an increase in the content of SWCN in the Ecoflex® matrix and the conductive behavior was not visible, even for the greatest concentration (10:0.06 weight ratio). In the case of the Ecoflex® polymer matrix, the conduction relaxation process at a frequency ca. several kilohertz appeared and became stronger with an increase in the SWCN admixture in the matrix. Addition of oleic acid to the polymer matrix had a smaller effect on the increase in the dielectric response than the addition of liquid crystal 5CB. Fourier transform infrared (FTIR) results revealed that the molecular structure and chemical character of the Ecoflex® and PCL matrixes remained unchanged upon the addition of SWCN or 5CB in a weight ratio of 10:0.01 and 10:1, respectively, while molecular interactions appeared between L,D-PLA and 5CB. Moreover, adding oleic acid to pure Ecoflex® as well as the binary and ternary hybrid layers with SWCN and/or 5CB in a weight ratio of Ecoflex®:oleic acid equal to 10:0.3 did not have an influence on the chemical bonding of these materials.


2011 ◽  
Vol 115 (19) ◽  
pp. 5730-5740 ◽  
Author(s):  
M. J. Sanchis ◽  
P. Ortiz-Serna ◽  
M. Carsí ◽  
R. Díaz-Calleja ◽  
E. Riande ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Yongfang Qian ◽  
Zhen Zhang ◽  
Laijiu Zheng ◽  
Ruoyuan Song ◽  
Yuping Zhao

Design and fabrication of nanofibrous scaffolds should mimic the native extracellular matrix. This study is aimed at investigating electrospinning of polycaprolactone (PCL) blended with chitosan-gelatin complex. The morphologies were observed from scanning electron microscope. As-spun blended mats had thinner fibers than pure PCL. X-ray diffraction was used to analyze the degree of crystallinity. The intensity at two peaks at 2θof 21° and 23.5° gradually decreased with the percentage of chitosan-gelatin complex increasing. Moreover, incorporation of the complex could obviously improve the hydrophilicity of as-spun blended mats. Mechanical properties of as-spun nanofibrous mats were also tested. The elongation at break of fibrous mats increased with the PCL content increasing and the ultimate tensile strength varied with different weight ratios. The as-spun mats had higher tensile strength when the weight ratio of PCL to CS-Gel was 75/25 compared to pure PCL. Both as-spun PCL scaffolds and PCL/CS-Gel scaffolds supported the proliferation of porcine iliac endothelial cells, and PCL/CS-Gel had better cell viability than pure PCL. Therefore, electrospun PCL/Chitosan-gelatin nanofibrous mats with weight ratio of 75/25 have better hydrophilicity mechanical properties, and cell proliferation and thus would be a promising candidate for tissue engineering scaffolds.


2014 ◽  
Vol 802 ◽  
pp. 20-24 ◽  
Author(s):  
Lucas Moreira Ferreira ◽  
Luciano Braga Alkmin ◽  
Érika C.T. Ramos ◽  
Carlos Angelo Nunes ◽  
Alfeu Saraiva Ramos

The milling process of elemental Ti-2Ta-22Si-11B and Ti-6Ta-22Si-11B (at-%) powder mixtures were performed in a planetary Fritsch P-5 ball mill using stainless steel vials (225 mL) and hardened steel balls (19 mm diameter). Ball-to-powder weight ratio of 10:1 and a rotary speed of 300 rpm were adopted, varying the milling time. Wet milling (isopropyl alcohol) for 20 more minutes was used to increase the yield powder in to the vial. Following the Ti-Ta-Si-B powders milled for 600 min were heat-treated at 1100°C for 1 h in order to obtain the equilibrium structures. The milled powders and heat-treated samples were characterized by X-ray diffraction, scanning electron microscopy, and energy dispersive spectrometry. Supersaturated Ti solid solutions were formed during ball milling of Ti-Ta-Si-B powders while that the Ti5Si3 phase was formed after milling for 620 min of the Ta-richer powder mixture only. The particles sizes were initially increased during the initial milling times, and the wet milling provided the yield powder into the vials. A large amount of pores was found in both the sintered samples which presented the formation of the TiSS,(ss-solid solution) Ti6Si2B and TiB.


2015 ◽  
Vol 16 (4) ◽  
pp. 700-705
Author(s):  
I.F. Myronyuk ◽  
V.I. Mandzyuk ◽  
V.M. Sachko ◽  
Yu.O. Kyluk

The article explores the structure, morphology and conductive properties of composite material SiO2 – C using XRD, SAXS, low-temperature nitrogen adsorption, and impedance spectroscopy methods. It is set that SiO2 – C composite obtained by thermolytic decomposition of D-lactose, previously chemisorbed on fumed silica nanoparticles surface, has an open porous structure, in which mesopores of 6-12 nm in size are dominate. At weight ratio SiO2/C = 5/1 nanocrystallites of carbon phase in form of lamellar sheets of 0,4 × 0,4 × 5,0 nm3 in size contact with entire silica surface that results in composite material conductivity is 49 Оhm-1·m-1.


2021 ◽  
Vol 888 ◽  
pp. 37-42
Author(s):  
Yutaro Yagi ◽  
Isao Kagomiya ◽  
Ken-ichi Kakimoto

This study investigated the effects of Ba substitution on protonic conductive properties in the Fe doped Sr2TiO4 layered perovskite. We synthesized sintered samples of (BaxSr2-x)(Ti0.90Fe0.10)O4-δ (x= 0.05, 0.10) (BSTF05, BSTF10). The result of X-ray diffraction suggests that solid solute limitation of Ba is between x= 0.05 and 0.10. BSTF05 at 600 °C shows proton and oxide-ion conductivities as well as elecronic conductivity. It means that BSTF05 is a triple conductor at 600 °C under oxidation atmosphere. The proton conductivities in BSTF05 are lower than that in Ba un-doped Sr2(Ti0.9Fe0.1)O4-δ evaluated in our previous work, suggesting that the effect of the Ba substitution on proton defect generation is small. The redox reaction of Fe ions is more important for creation of proton defects in the layered perovskites.


1994 ◽  
Vol 49 (6) ◽  
pp. 812-820 ◽  
Author(s):  
Mohsen Safarpour Haghighi ◽  
Andreas Franken ◽  
Heiner Homborg

Of the isostructural series of monoclinic (PNP)[Ln(Pc)2]• xH2O compounds (Ln = La ••• Tm) the crystal structures of the complex salts of tervalent La (1), Gd (2) and Tm (3) have been determined by single crystal X-ray diffraction analysis. Unit cell data for 2: space group P21/c; a = 15.172(8), b = 20.826(2), c = 25.876(3) Å, β = 95.19(3)°, V - 8143(4) Å3, Z = 4; 1 and 3 are isostructural with 2. The lanthanide ion occupies the center of a nearly ideal square antiprism, although the two staggered phthalocyanine rings are severely distorted in an unsymmetrical funnel-shaped fashion due to electronic, steric, and packing influences in the crystal lattice. Steric effects dictate also the geometry of the PNP cation, which adopts a hybrid conformation whose structural characteristics are between the common linear and bent conformers with medium short P-N distances (1.562 Å) and large P-N-P angles in the range 165.6° (1) > 158.3° (2) > 156.1° (3). The strong IR bands at ca. 1375 cm-1 assigned to the asym. (P-N) stretch are diagnostic for this hybrid conformation. The presence of water of crystallization in the periphery of the diphthalocyanine anion is confirmed. The shortest contact distance is observed to one of the bridging nitrogen atoms of the Pc2- ligand (3.02 Å) indicating a weak (HO-H•••N) hydrogen bond


Crystals ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 222
Author(s):  
Lider ◽  
Sukhikh ◽  
Smolentsev ◽  
Semitut ◽  
Filatov ◽  
...  

Two binuclear coordination compounds of Cu(II) chloride with the bitopic ligand 1,1,2,2-tetrakis(pyrazol-1-yl)ethane (Pz4) of the composition [Cu2(µ2Pz4)(DMSO)2Cl4]·4H2O and [Cu2(µ2Pz4)(DMSO)2Cl4]∙2DMSO were prepared and characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis, single-crystal X-ray diffraction, and powder diffraction analysis. It was shown that in contrast to silver(I) and copper(II) nitrates, copper(II) chloride forms discrete complexes instead of coordination polymers. The supramolecular structure of the complex [Cu2(µ2Pz4)(DMSO)2Cl4]·4H2O with lattice water molecules is formed by OH···Cl and OH···O hydrogen bonds. Density functional theory (DFT) calculations of vibrational frequencies of the ligand and its copper(II) complex allowed for assigning IR bands to specific vibrations.


2006 ◽  
Vol 530-531 ◽  
pp. 557-561
Author(s):  
Rubens Maribondo Nascimento ◽  
Juliana Maria de Albuquerque Gimenez ◽  
Carlos Roberto Grandini ◽  
Alfredo Gonçalves da Cunha

The composite SmBa2Cu3O7-δ (Sm-123), obtained by the substitution of the ion Y for Sm in the very well known and studied YBa2Cu3O7-δ (Y-123), is potentially attractive for better understanding superconductivity mechanisms and for its applications as electronic devices. Sm-123 samples show higher critical temperatures than Y-123 ones do and a larger solubility of Sm in Ba-Cu-O solvent, which makes their growth process faster. When oxygen is present interstitially, it strongly affects the physical properties of the material. The dynamics of oxygen can be investigated by anelastic spectroscopy measurements, a powerful technique for the precise determination of the oscillation frequency and the internal friction when atomic jumps are possible. Anelastic spectroscopy allows determining the elasticity modulus (related to the oscillation frequency) and the elastic energy loss (related to the internal friction) as a function of the temperature. The sample was also investigated by X-ray diffraction (XRD), scanning electronic microscopy (SEM), and electric resistivity. The results obtained show a thermally activated relaxation structure composed by at least 3 relaxation processes. These processes may be attributed to the jumps of oxygen atoms present of the Cu-O plane in the orthorhombic phase.


Sign in / Sign up

Export Citation Format

Share Document