Effects of Metallic Impurities in Alkaline Electrolytes on Electro-Oxidation of Water and Alcohol Molecules

Author(s):  
Yi Shen ◽  
Yongfang Zhou ◽  
Hongying Li

Abstract The presence of metallic impurities in the electrolyte greatly affects electrocatalytic performance. A systematic study on this topic can not only provide guidance for rigorous practices on electrochemical measurements, but also in-depth fundamental understanding on the mechanisms of the electrochemical reactions. Herein, nine types of metallic ions including Cu2+, Ni2+, Fe3+, Fe2+, Co2+, Mn2+, Zn2+, Ce3+ and Al3+ are intentionally introduced into the electrolytes with a controlled manner and their effects on electro-oxidation of water, 5-hydroxymethylfurfural (HMF) and glycerol are investigated in details. Among these metal ions, Co2+ has the most pronounced effects on H2O electro-oxidation while Cu2+ species displays superior activity toward HMF and glycerol electro-oxidation, but negligible effects on H2O electro-oxidation. Such a unique feature of Cu2+ can also be noted from electro-oxidation of other small molecules, such as ethylene glycol, ethanol and furfural. More importantly, the effects of metallic impurities are independent of the composition of the electrodes, only rely on the pH of the electrolytes. In-situ electrochemical Raman spectroscopy, control electrochemical experiments and X-ray photoelectron spectroscopy analyses reveal that the origin of impurity effects is attributed to the formation of hydroxides during the electrochemical measurements.

1999 ◽  
Vol 566 ◽  
Author(s):  
Dnyanesh Tamboli ◽  
Sudipta Seal ◽  
Vimal Desai

Electrochemical interaction between the oxidizer and the metal is believed to play a key role in material removal in tungsten CMP. In this study, we use X-ray Photoelectron Spectroscopy (XPS) in conjunction with electrochemical measurements in both in-situ polishing conditions as well as in static solutions, to identify the passivation and dissolution modes of tungsten. Dissolution of tungsten oxides was found to be the primary non-mechanical tungsten removal mechanism in CMP.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Marc Benjamin Hahn ◽  
Paul M. Dietrich ◽  
Jörg Radnik

AbstractIonizing radiation damage to DNA plays a fundamental role in cancer therapy. X-ray photoelectron-spectroscopy (XPS) allows simultaneous irradiation and damage monitoring. Although water radiolysis is essential for radiation damage, all previous XPS studies were performed in vacuum. Here we present near-ambient-pressure XPS experiments to directly measure DNA damage under water atmosphere. They permit in-situ monitoring of the effects of radicals on fully hydrated double-stranded DNA. The results allow us to distinguish direct damage, by photons and secondary low-energy electrons (LEE), from damage by hydroxyl radicals or hydration induced modifications of damage pathways. The exposure of dry DNA to x-rays leads to strand-breaks at the sugar-phosphate backbone, while deoxyribose and nucleobases are less affected. In contrast, a strong increase of DNA damage is observed in water, where OH-radicals are produced. In consequence, base damage and base release become predominant, even though the number of strand-breaks increases further.


2021 ◽  
pp. 150898
Author(s):  
Makoto Takayanagi ◽  
Takashi Tsuchiya ◽  
Shigenori Ueda ◽  
Tohru Higuchi ◽  
Kazuya Terabe

1999 ◽  
Vol 567 ◽  
Author(s):  
Masayuki Suzuki ◽  
Yoji Saito

ABSTRACTWe tried direct oxynitridation of silicon surfaces by remote-plasma-exited nitrogen and oxygen gaseous mixtures at 700°C in a high vacuum. The oxynitrided surfaces were investigated with in-situ X-ray photoelectron spectroscopy. With increase of the oxynitridation time, the surface density of nitrogen gradually increases, but that of oxygen shows nearly saturation behavior after the rapid increase in the initial stage. We also annealed the grown oxynitride and oxide films to investigate the role of the contained nitrogen. The desorption rate of oxygen from the oxynitride films is much less than that from oxide films. We confirmed that nitrogen stabilizes the thermal stability of these oxynitride films.


2016 ◽  
Vol 55 (8S2) ◽  
pp. 08PC02 ◽  
Author(s):  
Antonio T. Lucero ◽  
Young-Chul Byun ◽  
Xiaoye Qin ◽  
Lanxia Cheng ◽  
Hyoungsub Kim ◽  
...  

2017 ◽  
Vol 53 (37) ◽  
pp. 5231-5234 ◽  
Author(s):  
Jack Chun-Ren Ke ◽  
Alex S. Walton ◽  
David J. Lewis ◽  
Aleksander Tedstone ◽  
Paul O'Brien ◽  
...  

Near-ambient-pressure X-ray photoelectron spectroscopy enables the study of the reaction of in situ-prepared methylammonium lead iodide (MAPI) perovskite at realistic water vapour pressures for the first time.


Sign in / Sign up

Export Citation Format

Share Document