Methylene Green Electrodeposited on SWNTs-Based "Bucky Papers" for NADH and L-Malate Oxidation.

2011 ◽  
Vol 3 (7) ◽  
pp. 2402-2409 ◽  
Author(s):  
Claudia W. Narváez Villarrubia ◽  
Rosalba A. Rincón ◽  
Vinod K. Radhakrishnan ◽  
Virginia Davis ◽  
Plamen Atanassov

1976 ◽  
Vol 22 (7) ◽  
pp. 1054-1057 ◽  
Author(s):  
A. K. Tyagi ◽  
T. L. Prasada Reddy ◽  
T. A. Venkitasubramanian

Irradiation with ultraviolet light (360 nm) of cell-free extracts, electron-transport particles, and soluble components from Mycobacterium phlei resulted in the loss of malate oxidation by the flavine adenine dinucleotide pathway both in cell-free extracts and reconstituted systems. Addition of vitamin K1 restored the loss to the extent of 14% and 11% in cell-free extracts and reconstituted systems respectively. Electron-transport particles from M. phlei upon reduction with malate exhibited electron-paramagnetic resonance signals at g = 2.002 and 1.94, characteristic of napthosemiquinone and nonheme iron protein, respectively. Upon irradiating the particles with ultraviolet light (360 nm) these signals were not observed. Particulate flavine-adenine-dinucleotide-dependent malate dehydrogenase (EC 1.1.1.37) of M. phlei assayed by the 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyl tetrazolium bromide and phenazine methosulfate–2,6-dichlorophenolindophenol systems, which trap electrons at cytochrome c and at the flavine level respectively, was inhibited by o-phenanthroline. These observations suggest that nonheme iron protein is sensitive to ultraviolet light (360 nm) and participates before or in combination with flavine in the malate (flavine adenine dinucleotide) pathway of M. phlei.


1995 ◽  
Vol 73 (S1) ◽  
pp. 453-458 ◽  
Author(s):  
Hiroshi Otani ◽  
Keisuke Kohmoto ◽  
Motoichiro Kodama

There are now nine or more Alternaria pathogens that produce host-specific toxins, and the structures of most of the toxins have been elucidated. Alternaria host-specific toxins are classified in three groups in terms of the primary site action. ACT-, AF-, and AK-toxins have in common an epoxy-decatrienoic acid structure and exert their primary effect on the plasma membrane of susceptible cells. A rapid increase in electrolyte loss from tissues and invaginations in the plasma membranes are common effects of these toxins. The second group is represented by ACR(L)-toxin, which induces changes in mitochondria, including swelling, vesiculation of cristae, decrease in the electron density of the matrix, increase in the rate of NADH oxidation, and inhibition of malate oxidation. The third group consists of AM-toxin, which appears to exert an early effect on both chloroplasts and plasma membranes. AM-toxin induces vesiculation of grana lamellae, inhibition of CO2 fixation, invagination of plasma membranes, and electrolyte loss. The roles of host-specific toxins in pathogenesis are discussed. Key words: Alternaria, host-specific toxin, plasma membrane, mitochondrion, chloroplast.


Medicina ◽  
2018 ◽  
Vol 54 (4) ◽  
pp. 62 ◽  
Author(s):  
Giedrė Šilkūnienė ◽  
Rasa Žūkienė ◽  
Zita Naučienė ◽  
Laima Degutytė-Fomins ◽  
Vida Mildažienė

Aim: This study aimed to compare hyperthermia-induced changes in respiration and generation of reactive oxygen species (ROS) in liver mitochondria derived from animals of different gender and age. Methods: The effects of hyperthermia (40–47 °C) on oxidation of different substrates and ROS production were estimated in mitochondria isolated from the liver of male and female rats of the 1–1.5, 3–4, or 6–7 months age. Results: Gender-dependent differences in response of respiration to hyperthermia were the highest at 3–4 months of age, less so at 6–7 months of age, and only minor at juvenile age. Mild hyperthermia (40–42 °C) stimulated pyruvate + malate oxidation in mitochondria of females, but inhibited in mitochondria of males in the 3–4 month age group. The resistance of mitochondrial membrane to hyperthermia was the highest at 3–4 month males, and the lowest in the 6–7 month age group. Inhibition of glutamate + malate oxidation by hyperthermia was caused by thermal inactivation of glutamate dehydrogenase. ROS generation at 37 °C was higher at 1–1.5 month of age, but the increase in ROS generation with rise in temperature in this age group was the smallest, and the strongest in 6–7 month old animals of both genders. Conclusions: The response to hyperthermia varies during the first 6–7 months of life of experimental animals: stronger gender dependence is characteristic at 3–4 months of age, while mitochondria from 6–7 months animals are less resistant to hyperthermia.


1970 ◽  
Vol 118 (2) ◽  
pp. 27P-28P
Author(s):  
M Jones ◽  
H K King

2013 ◽  
Vol 25 (10) ◽  
pp. 2394-2402 ◽  
Author(s):  
Sidney Aquino Neto ◽  
Thiago S. Almeida ◽  
Matthew T. Meredith ◽  
Shelley D. Minteer ◽  
Adalgisa R. De Andrade

Sign in / Sign up

Export Citation Format

Share Document