High Rate Capability of Spinel LiMn2O4/Graphene Nano-Hybrids for High Power Energy Storage Devices

2011 ◽  
2021 ◽  
Author(s):  
Haijun Chen ◽  
Shuhao Xiao ◽  
Yun-ze Li ◽  
Xudong Ma ◽  
Yan Huang ◽  
...  

Self-supported materials have been widely used in high-power energy storage devices due to the unique construction offering fast charge transfer from the active material to the conducting substrate. However, the...


2020 ◽  
Author(s):  
Yamin Zhang ◽  
Zhongpu Wang ◽  
Deping Li ◽  
Qing Sun ◽  
Kangrong Lai ◽  
...  

<p></p><p>Porous carbon has attracted extensive attentions as the electrode material for various energy storage devices considering its advantages like high theoretical capacitance/capacity, high conductivity, low cost and earth abundant inherence. However, there still exists some disadvantages limiting its further applications, such as the tedious fabrication process, limited metal-ion transport kinetics and undesired structure deformation at harsh electrochemical conditions. Herein, we report a facile strategy, with calcium gluconate firstly reported as the carbon source, to fabricate ultrathin porous carbon nanosheets. <a>The as-prepared Ca-900 electrode delivers excellent K-ion storage performance including high reversible capacity (430.7 mAh g<sup>-1</sup>), superior rate capability (154.8 mAh g<sup>-1</sup> at an ultrahigh current density of 5.0 A g<sup>-1</sup>) and ultra-stable long-term cycling stability (a high capacity retention ratio of ~81.2% after 4000 cycles at 1.0 A g<sup>-1</sup>). </a>Similarly, when being applied in Zn-ion capacitors, the Ca-900 electrode also exhibits an ultra-stable cycling performance with ~90.9% capacity retention after 4000 cycles at 1.0 A g<sup>-1</sup>, illuminating the applicable potentials. Moreover, the origin of the fast and smooth metal-ion storage is also revealed by carefully designed consecutive CV measurements. Overall, considering the facile preparation strategy, unique structure, application flexibility and in-depth mechanism investigations, this work will deepen the fundamental understandings and boost the commercialization of high-efficient energy storage devices like potassium-ion/sodium-ion batteries, zinc-ion batteries/capacitors and aluminum-ion batteries.</p><br><p></p>


Author(s):  
Dhanasekar Kesavan ◽  
Vimal Kumar Mariappan ◽  
Karthikeyan Krishnamoorthy ◽  
Sang-Jae Kim

In this study, we report a facile carbothermal method for the preparation of boron-oxy-carbide (BOC) nanostructures and explore their properties towards electrochemical energy storage devices.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 372
Author(s):  
Liyang Lin ◽  
Susu Chen ◽  
Tao Deng ◽  
Wen Zeng

The metal oxides/graphene nanocomposites have great application prospects in the fields of electrochemical energy storage and gas sensing detection. However, rational synthesis of such materials with good conductivity and electrochemical activity is the topical challenge for high-performance devices. Here, SnO2/graphene nanocomposite is taken as a typical example and develops a universal synthesis method that overcome these challenges and prepares the oxygen-deficient SnO2 hollow nanospheres/graphene (r-SnO2/GN) nanocomposite with excellent performance for supercapacitors and gas sensors. The electrode r-SnO2/GN exhibits specific capacitance of 947.4 F g−1 at a current density of 2 mA cm−2 and of 640.0 F g−1 even at 20 mA cm−2, showing remarkable rate capability. For gas-sensing application, the sensor r-SnO2/GN showed good sensitivity (~13.8 under 500 ppm) and short response/recovering time toward methane gas. These performance features make r-SnO2/GN nanocomposite a promising candidate for high-performance energy storage devices and gas sensors.


Author(s):  
Yunping Wu ◽  
Wei Wei ◽  
Tianyi Ding ◽  
Sheng Chen ◽  
Rui Zhai ◽  
...  

Two-dimensional (2D) heterostructures combine the advantageous features of different 2D materials and represent advanced electrode architectures for development of efficient energy storage devices. However, the common 2D heterostructures made by...


Author(s):  
Nilimapriyadarsini Swain ◽  
Saravanakumar Balasubramaniam ◽  
Manab Kundu ◽  
Lukas Schmidt-Mende ◽  
Ananthakumar Ramadoss

Supercapacitors have emerged as an outstanding candidate among numerous energy storage devices because of their long-term cycle life, high power density, and minimal safety concerns. As we know, the lower...


2020 ◽  
Vol 142 (46) ◽  
pp. 19570-19578
Author(s):  
Minghao Yu ◽  
Naisa Chandrasekhar ◽  
Ramya Kormath Madam Raghupathy ◽  
Khoa Hoang Ly ◽  
Haozhe Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document