Silicon Nanowire-Graphite Composites As High Energy Anode Materials for Lithium Ion Batteries

2020 ◽  
Vol MA2020-01 (2) ◽  
pp. 386-386
Author(s):  
Caroline Keller ◽  
Saravanan Karuppiah ◽  
Praveen Kumar ◽  
Gérard Lapertot ◽  
Pierre-Henri Jouneau ◽  
...  
2018 ◽  
Vol 6 (16) ◽  
pp. 7070-7079 ◽  
Author(s):  
Long Pan ◽  
Zheng-Wei Zhou ◽  
Yi-Tao Liu ◽  
Xu-Ming Xie

A universal strategy is proposed for thein situsynthesis of TiO2(B) nanosheets on pristine carbon nanomaterials. Benefiting from a remarkable synergistic effect, the resulting nanohybrids exhibit superior high-rate lithium storage performance. In this sense, our strategy may open the door to next-generation, high-power and high-energy anode materials for lithium-ion batteries.


2019 ◽  
Vol 7 (5) ◽  
pp. 2165-2171 ◽  
Author(s):  
Xingshuai Lv ◽  
Wei Wei ◽  
Baibiao Huang ◽  
Ying Dai

Siligraphenes including g-SiC2 and g-SiC3 can be promising candidates as anode materials for lithium-ion batteries.


Nanoscale ◽  
2015 ◽  
Vol 7 (1) ◽  
pp. 232-239 ◽  
Author(s):  
Fan Zhang ◽  
Ruihan Zhang ◽  
Jinkui Feng ◽  
Lijie Ci ◽  
Shenglin Xiong ◽  
...  

Well dispersed rice-like FeCO3 nanoparticles were produced and combined with reduced graphene oxide (RGO) via a one-pot solvothermal route.


2021 ◽  
pp. 2150105
Author(s):  
NARUEPHON MAHAMAI ◽  
THANAPHAT AUTTHAWONG ◽  
AISHUI YU ◽  
THAPANEE SARAKONSRI

Lithium-ion batteries (LIBs) have become commercialized technologies for the modern and future world, but commercial batteries using graphite still have a low specific capacity and are concerned with safety issues. Silicon (Si) and antimony (Sb) nanocomposites have the tendency to be synthesized as high-energy-density anode materials which can be a solution for the above-mentioned problems. This work reported the synthesis methods and characterization of Sb and Si composited with nitrogen-doped graphene (SbSi/NrGO) by facile chemical method and thermal treatment. Si was obtained by magnesiothermic reduction of SiO2 derived from rice husk, waste from the agricultural process. To study the phases, particle distributions, and morphologies, all prepared composites were characterized. In this experiment, the phase compositions were confirmed as [Formula: see text]-Si, [Formula: see text]-Si, SiC, Sb, and shifted peaks of expanded C which were caused by NrGO synthesis. Interestingly, a good distribution of Si and Sb particles on the NrGO surface was obtained in 15Sb15Si/NrGO composition. It could be due to appropriate Sb and Si contents on the NrGO surface area in composite materials. Morphological identification of synthesized products represented the Sb and Si particles in nanoscale dispersed on thin wrinkled-paper NrGO. These results suggested that the synthesis method in this paper is appropriate to prepare SbSi/NrGO nanocomposites to be used as high-performance anode materials in high-performance LIBs for advanced applications.


Ionics ◽  
2014 ◽  
Vol 21 (7) ◽  
pp. 1893-1899 ◽  
Author(s):  
Chengxu Mou ◽  
Liping Wang ◽  
Qijiu Deng ◽  
Zongling Huang ◽  
Jingze Li

2018 ◽  
Vol 6 (17) ◽  
pp. 7877-7886 ◽  
Author(s):  
Hucheng Song ◽  
Sheng Wang ◽  
Xiaoying Song ◽  
Huafeng Yang ◽  
Gaohui Du ◽  
...  

Silicon (Si) is a promising anode material for next-generation high-energy lithium-ion batteries (LIBs).


2018 ◽  
Vol 2018 ◽  
pp. 1-7
Author(s):  
Chenhao Qian ◽  
Ziyang He ◽  
Chen Liang ◽  
Weixi Ji

High-pressure torsion (HPT), a severe plastic deformation (SPD) method, is rarely used in the manufacturing process of functional materials. In the present work, the authors creatively proposed using HPT as an alternative method an approach for high energy ball-milling in the preparation of an Fe3O4 and lamellar graphite nanosheet (GNS) composite material. The corresponding electrochemical experiments verified that the in situ synthesized Fe3O4/GNS composite material has good lithium-storage performance and that it can retain good capacity (548.2 mA h g−1) even after several hundred cycles with high current density (8 C). Meanwhile, this performance has directly confirmed that SPD technique has great potential for the preparation of anode materials of lithium-ion batteries, especially in manufacturing metallic functional nanomaterials.


2021 ◽  
Vol 3 (3) ◽  
pp. 182-190
Author(s):  
Peilin Yu ◽  
Mingyang Zhang

Lithium-ion batteries have become a new hot spot in battery research due to their high-energy density, environmental friendliness, and multiple charge/discharge times. Silicon-based materials have become the best choice of anode materials for lithium-ion batteries due to their advantages of low lithium insertion voltage, high specific theoretical capacity, and large reserves on the planet. However, the silicon-based material has a large volume expansion (about 300%) during cycling, which causes the active silicon to fall off from the surface of the conducting material. This expansion will also break the solid electrolyte interphase (SEI) on the surface of the silicon electrode, and will consume additional Li+, causing the battery’s capacity to drop rapidly as the times of circulation increases. In addition, the conductivity of silicon-based materials is lower than that of graphite anode, which have already been used commercially, led to the worse performance of the silicon anode. These drawbacks force silicon-based anode materials to encounter huge resistance in the commercialization process. Therefore, research on the improvement of performance of the silicon-based anode materials is of great significance. 


Sign in / Sign up

Export Citation Format

Share Document