Polymer Brush Made from Ionic Liquid and Its Anti-Biofilm Formation Behaviors By Environmental Biota in a Flow-Type Laboratory Biofilm Reactor

2020 ◽  
Vol MA2020-01 (43) ◽  
pp. 2519-2519
Author(s):  
Hideyuki Kanematsu ◽  
Atsuya Oizumi ◽  
Takaya Sato ◽  
Ryo Sato ◽  
Toshio Kamijo ◽  
...  
Coatings ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 398 ◽  
Author(s):  
Hideyuki Kanematsu ◽  
Atsuya Oizumi ◽  
Takaya Sato ◽  
Toshio Kamijo ◽  
Saika Honma ◽  
...  

N,N-diethyl-N-(2-methancryloylethy)-N-methylammonium bis(trifluoromethylsulfonyl) imide polymer (DEMM-TFSI) brush coated specimens (substrate: glasses) and a liquid ion type of polymer brush coating were investigated for their antifouling effect on biofilms. Biofilms were produced by two kinds of bacteria, E. coli and S. epidermidis. They were formed on specimens immersed into wells (of 12-well plates) that were filled with culture liquids and bacteria. The biofilm formation was observed. Also, brush coated specimens and glass substrates were investigated in the same way. DEMM polymer brush coated specimens formed more biofilm than PMMA (polymethyl methacrylate) polymer brush coated specimens and glass substrates. A greater amount of polarized components of biofilms was also observed for DEMM polymer brush coated specimens. The polar characteristics could be attributed to the attraction capability of bacteria and biofilms on DEMM polymer brush coated specimens. When considering the ease of removing biofilms by washing it with water, the ionic liquid type polymer brush (coated specimens) could be used for antifouling applications. If an initial antifouling application is needed, then the polar characteristics could be adjusted (design of the components and concentrations of ionic liquids, etc.) to solve the problem.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1704
Author(s):  
Krzysztof Pałka ◽  
Małgorzata Miazga-Karska ◽  
Joanna Pawłat ◽  
Joanna Kleczewska ◽  
Agata Przekora

The aim of this study was to evaluate the effect of modification with liquid rubber on the adhesion to tooth tissues (enamel, dentin), wettability and ability to inhibit bacterial biofilm formation of resin-based dental composites. Two commercial composites (Flow-Art–flow type with 60% ceramic filler and Boston–packable type with 78% ceramic filler; both from Arkona Laboratorium Farmakologii Stomatologicznej, Nasutów, Poland) were modified by addition of 5% by weight (of resin) of a liquid methacrylate-terminated polybutadiene. Results showed that modification of the flow type composite significantly (p < 0.05) increased the shear bond strength values by 17% for enamel and by 33% for dentine. Addition of liquid rubber significantly (p < 0.05) reduced also hydrophilicity of the dental materials since the water contact angle was increased from 81–83° to 87–89°. Interestingly, modified packable type material showed improved antibiofilm activity against Steptococcus mutans and Streptococcus sanguinis (quantitative assay with crystal violet), but also cytotoxicity against eukaryotic cells since cell viability was reduced to 37% as proven in a direct-contact WST-8 test. Introduction of the same modification to the flow type material significantly improved its antibiofilm properties (biofilm reduction by approximately 6% compared to the unmodified material, p < 0.05) without cytotoxic effects against human fibroblasts (cell viability near 100%). Thus, modified flow type composite may be considered as a candidate to be used as restorative material since it exhibits both nontoxicity and antibiofilm properties.


2015 ◽  
Vol 2 (15) ◽  
pp. 1500187 ◽  
Author(s):  
Hiroyuki Arafune ◽  
Toshio Kamijo ◽  
Takashi Morinaga ◽  
Saika Honma ◽  
Takaya Sato ◽  
...  

Antibiotics ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 91 ◽  
Author(s):  
Akiko Ogawa ◽  
Keito Takakura ◽  
Katsuhiko Sano ◽  
Hideyuki Kanematsu ◽  
Takehiko Yamano ◽  
...  

Previously, we demonstrated that silver nanoparticle-dispersed silane-based coating could inhibit biofilm formation in conditions where seawater was used as a bacterial source and circulated in a closed laboratory biofilm reactor. However, it is still unclear whether the microbiome of a biofilm of silver nanoparticle-dispersed silane-based coating samples (Ag) differs from that of a biofilm of non-dispersed silane-based coating samples (Non-Ag). This study aimed to perform a microbiome analysis of the biofilms grown on the aforementioned coatings using a next-generation sequencing (NGS) technique. For this, a biofilm formation test was conducted by allowing seawater to flow through a closed laboratory biofilm reactor; subsequently, DNAs extracted from the biofilms of Ag and Non-Ag were used to prepare 16S rRNA amplicon libraries to analyze the microbiomes by NGS. Results of the operational taxonomy unit indicated that the biofilms of Non-Ag and Ag comprised one and no phyla of archaea, respectively, whereas Proteobacteria was the dominant phylum for both biofilms. Additionally, in both biofilms, Non-Ag and Ag, Marinomonas was the primary bacterial group involved in early stage biofilm formation, whereas Anaerospora was primarily involved in late-stage biofilm formation. These results indicate that silver nanoparticles will be unrelated to the bacterial composition of biofilms on the surface of silane-based coatings, while they control biofilm formation there.


2011 ◽  
Vol 23 (42) ◽  
pp. 4868-4872 ◽  
Author(s):  
Takaya Sato ◽  
Takashi Morinaga ◽  
Shoko Marukane ◽  
Takuya Narutomi ◽  
Tatsuya Igarashi ◽  
...  

2007 ◽  
Vol 74 (3) ◽  
pp. 916-919 ◽  
Author(s):  
M. Reza Nejadnik ◽  
Henny C. van der Mei ◽  
Henk J. Busscher ◽  
Willem Norde

ABSTRACT We introduce a procedure for determining shear forces at the balance between attachment and detachment of bacteria under flow. This procedure can be applied to derive adhesion forces in weak-adherence systems, such as polymer brush coatings, which are currently at the center of attention for their control of bacterial adhesion and biofilm formation.


2021 ◽  
Vol 42 ◽  
pp. 102178
Author(s):  
Ahmad Hussaini Jagaba ◽  
Shamsul Rahman Mohamed Kutty ◽  
Azmatullah Noor ◽  
Abdullahi Haruna Birniwa ◽  
Augustine Chioma Affam ◽  
...  

2018 ◽  
Vol 85 (13) ◽  
pp. 1089-1095 ◽  
Author(s):  
Hideyuki Kanematsu ◽  
Atsuya Oizumi ◽  
Takaya Sato ◽  
Toshio Kamijo ◽  
Saika Honma ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document