scholarly journals Loss-of-function and gain-of-function phenotypes of stomatocytosis mutant RhAG F65S

2011 ◽  
Vol 301 (6) ◽  
pp. C1325-C1343 ◽  
Author(s):  
Andrew K. Stewart ◽  
Boris E. Shmukler ◽  
David H. Vandorpe ◽  
Alicia Rivera ◽  
John F. Heneghan ◽  
...  

Four patients with overhydrated cation leak stomatocytosis (OHSt) exhibited the heterozygous RhAG missense mutation F65S. OHSt erythrocytes were osmotically fragile, with elevated Na and decreased K contents and increased cation channel-like activity. Xenopus oocytes expressing wild-type RhAG and RhAG F65S exhibited increased ouabain and bumetanide-resistant uptake of Li+and86Rb+, with secondarily increased86Rb+influx sensitive to ouabain and to bumetanide. Increased RhAG-associated14C-methylammonium (MA) influx was severely reduced in RhAG F65S-expressing oocytes. RhAG-associated influxes of Li+,86Rb+, and14C-MA were pharmacologically distinct, and Li+uptakes associated with RhAG and RhAG F65S were differentially inhibited by NH4+and Gd3+. RhAG-expressing oocytes were acidified and depolarized by 5 mM bath NH3/NH4+, but alkalinized and depolarized by subsequent bath exposure to 5 mM methylammonium chloride (MA/MA+). RhAG F65S-expressing oocytes exhibited near-wild-type responses to NH4Cl, but MA/MA+elicited attenuated alkalinization and strong hyperpolarization. Expression of RhAG or RhAG F65S increased steady-state cation currents unaltered by bath Li+substitution or bath addition of 5 mM NH4Cl or MA/MA+. These oocyte studies suggest that 1) RhAG expression increases oocyte transport of NH3/NH4+and MA/MA+; 2) RhAG F65S exhibits gain-of-function phenotypes of increased cation conductance/permeability, and loss-of-function phenotypes of decreased and modified MA/MA+transport, and decreased NH3/NH4+-associated depolarization; and 3) RhAG transports NH3/NH4+and MA/MA+by distinct mechanisms, and/or the substrates elicit distinct cellular responses. Thus, RhAG F65S is a loss-of-function mutation for amine transport. The altered oocyte intracellular pH, membrane potential, and currents associated with RhAG or RhAG F65S expression may reflect distinct transport mechanisms.

2012 ◽  
Vol 26 (12) ◽  
pp. 2081-2091 ◽  
Author(s):  
Michael P. Grant ◽  
Ann Stepanchick ◽  
Gerda E. Breitwieser

Abstract Calcium-sensing receptors (CaSRs) regulate systemic Ca2+ homeostasis. Loss-of-function mutations cause familial benign hypocalciuric hypercalcemia (FHH) or neonatal severe hyperparathyroidism (NSHPT). FHH/NSHPT mutations can reduce trafficking of CaSRs to the plasma membrane. CaSR signaling is potentiated by agonist-driven anterograde CaSR trafficking, leading to a new steady state level of plasma membrane CaSR, which is maintained, with minimal functional desensitization, as long as extracellular Ca2+ is elevated. This requirement for CaSR signaling to drive CaSR trafficking to the plasma membrane led us to reconsider the mechanism(s) contributing to dysregulated trafficking of FHH/NSHPT mutants. We simultaneously monitored dynamic changes in plasma membrane levels of CaSR and intracellular Ca2+, using a chimeric CaSR construct, which allowed explicit tracking of plasma membrane levels of mutant or wild-type CaSRs in the presence of nonchimeric partners. Expression of mutants alone revealed severe defects in plasma membrane targeting and Ca2+ signaling, which were substantially rescued by coexpression with wild-type CaSR. Biasing toward heterodimerization of wild-type and FHH/NSHPT mutants revealed that intracellular Ca2+ oscillations were insufficient to rescue plasma membrane targeting. Coexpression of the nonfunctional mutant E297K with the truncation CaSRΔ868 robustly rescued trafficking and Ca2+ signaling, whereas coexpression of distinct FHH/NSHPT mutants rescued neither trafficking nor signaling. Our study suggests that rescue of FHH/NSHPT mutants requires a steady state intracellular Ca2+ response when extracellular Ca2+ is elevated and argues that Ca2+ signaling by wild-type CaSRs rescues FHH mutant trafficking to the plasma membrane.


2011 ◽  
Vol 208 (8) ◽  
pp. 1635-1648 ◽  
Author(s):  
Luyan Liu ◽  
Satoshi Okada ◽  
Xiao-Fei Kong ◽  
Alexandra Y. Kreins ◽  
Sophie Cypowyj ◽  
...  

Chronic mucocutaneous candidiasis disease (CMCD) may be caused by autosomal dominant (AD) IL-17F deficiency or autosomal recessive (AR) IL-17RA deficiency. Here, using whole-exome sequencing, we identified heterozygous germline mutations in STAT1 in 47 patients from 20 kindreds with AD CMCD. Previously described heterozygous STAT1 mutant alleles are loss-of-function and cause AD predisposition to mycobacterial disease caused by impaired STAT1-dependent cellular responses to IFN-γ. Other loss-of-function STAT1 alleles cause AR predisposition to intracellular bacterial and viral diseases, caused by impaired STAT1-dependent responses to IFN-α/β, IFN-γ, IFN-λ, and IL-27. In contrast, the 12 AD CMCD-inducing STAT1 mutant alleles described here are gain-of-function and increase STAT1-dependent cellular responses to these cytokines, and to cytokines that predominantly activate STAT3, such as IL-6 and IL-21. All of these mutations affect the coiled-coil domain and impair the nuclear dephosphorylation of activated STAT1, accounting for their gain-of-function and dominance. Stronger cellular responses to the STAT1-dependent IL-17 inhibitors IFN-α/β, IFN-γ, and IL-27, and stronger STAT1 activation in response to the STAT3-dependent IL-17 inducers IL-6 and IL-21, hinder the development of T cells producing IL-17A, IL-17F, and IL-22. Gain-of-function STAT1 alleles therefore cause AD CMCD by impairing IL-17 immunity.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2040-2040
Author(s):  
Connie M Westhoff ◽  
Seth Alper

Abstract Abstract 2040 The erythroid Rh family of proteins includes RhCE and RhD which carry the common Rh antigens, and the related Rh-associated glycoprotein, RhAG. RhAG is required for trafficking of the blood group proteins to the membrane and forms the core of a macro-complex in the membrane which includes glycophorin B, Band 3, CD47, and LW. The Rh proteins are structurally and functionally related to the Amt superfamily of NH3/NH4+ transport proteins, and RhAG and its nonerythroid paralogs, RhCG and RhBG, have been shown to mediate NH3/NH4+ transport. RhCG is responsible for part of renal collecting duct epithelial cell NH3/NH4+ secretion, and Rhcg-/- mice exhibit incomplete distal renal tubular acidosis due to impaired urinary NH4+ excretion. The Rhag-/- mouse is grossly normal, and the significance of RhAG-mediated NH3/NH4+ transport in human erythrocytes remains unclear. Over-hydrated hereditary stomatocytosis (OHSt) is a rare dominant disorder characterized by moderate hemolytic anemia, increased mean red cell volumes, stomatocytes and echinocytes, and increased red cell permeability to the monovalent cations, Na+ and K+. Six of the seven OHSt kindred studied by Bruce et al. (Blood. 2009;113:1350) displayed a heterozygous Phe65Ser mutation in RhAG. Expression studies of the mutant 65Ser-RhAG in Xenopus oocytes induced a monovalent cation flux compatible with the cation leak seen in RBCs. The increased Na+ and decreased K+ contents of mutant RhAG-expressing oocytes suggested that F65S is a gain-of-function mutation that opens a cation leak, likely within the RhAG polypeptide. In this study the ammonia transport properties of the OHSt mutant 65Ser-RhAG were investigated. Xenopus oocytes were injected with cRNA encoding wild-type RhAG, the OHSt mutant 65Ser-RhAG, and 65Val-RhAG, an engineered mutation with a smaller hydrophobic side chain at position 65. Wild-type and mutant RhAG polypeptides were well-expressed in the oocyte membrane as measured by quantitative immunoblotting. Uptake of the NH3/NH4+ substrate analog 14C-methylammonium (MA), was assayed in oocytes previously injected with water (control) or with cRNA. Expression of wild-type RhAG mediated MA uptake at rates 6-fold greater than that of water-injected controls. Uptake of MA by oocytes expressing 65Val-RhAG was equivalent to that of wild type RhAG. However, MA uptake by oocytes expressing OHSt mutant 65Ser-RhAG was greatly reduced to less than 20% that of oocytes expressing wild-type RHAG or 65Val-RhAG, and was only 1.5-fold greater than that of water-injected control oocytes. Co-expression with other, individual Rh complex members glycophorin B, RhD, RhCE, or Band 3 did not alter MA-mediated uptake by RhAG-expressing oocytes. Importantly, this study reveals that the RhAG mutation Phe65Ser found in patients with type 1 over-hydrated stomatocytosis is a loss of function mutation. Further study is required to define the relationship between loss of NH3/NH4+ transport and erythrocyte Na+ and K+ cation content. Disclosures: Westhoff: Immucor: Scientific Advisor.


2000 ◽  
Vol 279 (3) ◽  
pp. C596-C602 ◽  
Author(s):  
Jay D. Pal ◽  
Xiaoqin Liu ◽  
Donna Mackay ◽  
Alan Shiels ◽  
Viviana M. Berthoud ◽  
...  

Human connexin46 (hCx46) forms gap junctional channels interconnecting lens fiber cells and appears to be critical for normal lens function, because hCx46 mutations have been linked to congenital cataracts. We studied two hCx46 mutants, N63S, a missense mutation in the first extracellular domain, and fs380, a frame-shift mutation that shifts the translational reading frame at amino acid residue 380. We expressed wild-type Cx46 and the two mutants in Xenopus oocytes. Production of the expressed proteins was verified by SDS-PAGE after metabolic labeling with [35S]methionine or by immunoblotting. Dual two-microelectrode voltage-clamp studies showed that hCx46 formed both gap junctional channels in paired Xenopus oocytes and hemi-gap junctional channels in single oocytes. In contrast, neither of the two cataract-associated hCx46 mutants could form intercellular channels in paired Xenopus oocytes. The hCx46 mutants were also impaired in their ability to form hemi-gap-junctional channels. When N63S or fs380 was coexpressed with wild-type connexins, both mutations acted like “loss of function” rather than “dominant negative” mutations, because they did not affect the gap junctional conductance induced by either wild-type hCx46 or wild-type hCx50.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3009-3009 ◽  
Author(s):  
Iris Appelmann ◽  
Claudio Scuoppo ◽  
Vishal Thapar ◽  
Daniela Ledezma ◽  
Amaia Lujambio ◽  
...  

Abstract EZH2 is the catalytic component of the polycomb repressive complex 2 (PRC2), which also contains the non-catalytic subunits suppressor of zeste 12 (SUZ12) and embryonic ectoderm development (EED). This complex methylates histone H3 at lysine 27 (H3K27) which, together with H3K4 methylation, generates a bivalent “code” that primes genes for either expression or silencing. EZH2 is highly expressed in stem cells and many proliferating cells, downregulated in differentiated cells and frequently altered in cancer in ways that point to a context dependent role for this gene. For instance, overexpression of EZH2 has been described in prostate and breast cancer, where this overexpression is associated with invasive growth metastatic potential and poor clinical outcome. More recently, both gain and loss of function mutations of EZH2 were identified in human cancer. In particular, activating mutations of EZH2 affecting a tyrosine at position 641 located within the SET domain (Y641) were observed in lymphoma. In striking contrast to wild type EZH2 which catalyzes the monomethylation of H3K27 very efficiently and shows less efficient catalytic activity in the subsequent di- and trimethylation reactions, the mutation generates a neomorphic protein with enhanced catalytic activity and efficiency for di- and tri-methylation, hinting toward a “cooperation” of both wild type and mutant EZH2 to increase total H3K27me3 levels and representing a functional equivalent of EZH2 overexpression in human lymphoma. Gain of function mutations in EZH2 are frequent in Diffuse Large B-cell Lymphoma (DLBCL; 22%) and in Follicular Lymphoma (FL; 7%) and recent data implicate EZH2 as an oncogene in DLBCL and FL lymphomas. In contrast to DLBCL and FL, EZH2 mutations have so far never been identified in MYC-driven B-cell Non-Hodgkin Lymphoma (B-NHL), and EZH2 expression is suppressed in Burkitt’s Lymphoma (BL), a lymphoma for which a MYC translocation is pathognomonic, suggesting that in this context EZH2 could have a role different from its role in DLBCL and FL. We probed the role of EZH2 in MYC-driven lymphomagenesis by mimicking the loss of function mutations by RNAi mediated suppression of EZH2 and the gain of function mutations by over-expression of the Y641 mutant. Our results show that suppression of EZH2, but not overexpression of the EZH2 Y641 mutant, accelerates MYC-driven lymphomagenesis by attenuating apoptosis. Our model recapitulates the transcriptional signature of a subset of B-NHLs driven by MYC overactivation and EZH2 suppression. Taken together, our data imply EZH2 as a tumor suppressor in the context of MYC activation and thus raise a warning for the use of EZH2-targeted therapies in some B-NHLs subtypes. Disclosures No relevant conflicts of interest to declare.


Cancers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2125
Author(s):  
Magdalena C. Liebl ◽  
Thomas G. Hofmann

The transcription factor p53 functions as a critical tumor suppressor by orchestrating a plethora of cellular responses such as DNA repair, cell cycle arrest, cellular senescence, cell death, cell differentiation, and metabolism. In unstressed cells, p53 levels are kept low due to its polyubiquitination by the E3 ubiquitin ligase MDM2. In response to various stress signals, including DNA damage and aberrant growth signals, the interaction between p53 and MDM2 is blocked and p53 becomes stabilized, allowing p53 to regulate a diverse set of cellular responses mainly through the transactivation of its target genes. The outcome of p53 activation is controlled by its dynamics, its interactions with other proteins, and post-translational modifications. Due to its involvement in several tumor-suppressing pathways, p53 function is frequently impaired in human cancers. In colorectal cancer (CRC), the TP53 gene is mutated in 43% of tumors, and the remaining tumors often have compromised p53 functioning because of alterations in the genes encoding proteins involved in p53 regulation, such as ATM (13%) or DNA-PKcs (11%). TP53 mutations in CRC are usually missense mutations that impair wild-type p53 function (loss-of-function) and that even might provide neo-morphic (gain-of-function) activities such as promoting cancer cell stemness, cell proliferation, invasion, and metastasis, thereby promoting cancer progression. Although the first compounds targeting p53 are in clinical trials, a better understanding of wild-type and mutant p53 functions will likely pave the way for novel CRC therapies.


1994 ◽  
Vol 126 (1) ◽  
pp. 199-209 ◽  
Author(s):  
S Clark-Maguire ◽  
P E Mains

Genetic evidence suggests that the product of the mei-1 gene of Caenorhabditis elegans is specifically required for meiosis in the female germline. Loss-of-function mei-1 mutations block meiotic spindle formation while a gain-of-function allele instead results in spindle defects during the early mitotic cleavages. In this report, we use immunocytochemistry to examine the localization of the mei-1 product in wild-type and mutant embryos. During metaphase of meiosis I in wild-type embryos, mei-1 protein was found throughout the spindle but was more concentrated toward the poles. At telophase I, mei-1 product colocalized with the chromatin at the spindle poles. The pattern was repeated during meiosis II but no mei-1 product was visible during the subsequent mitotic cleavages. The mei-1 gain-of-function allele resulted in ectopic mei-1 staining in the centers of the microtubule-organizing centers during interphase and in the spindles during the early cleavages. This aberrant localization is probably responsible for the poorly formed and misoriented cleavage spindles characteristic of the mutation. We also examined the localization of mei-1(+) product in the presence of mutations of genes that genetically interact with mei-1 alleles. mei-2 is apparently required to localize mei-1 product to the spindle during meiosis while mel-26 acts as a postmeiotic inhibitor. We conclude that mei-1 encodes a novel spindle component, one that is specialized for the acentriolar meiotic spindles unique to female meiosis. The genes mei-2 and mel-26 are part of a regulatory network that confines mei-1 activity to meiosis.


2006 ◽  
Vol 127 (2) ◽  
pp. 133-144 ◽  
Author(s):  
Maria Mayer ◽  
Gabriel Schaaf ◽  
Isabelle Mouro ◽  
Claude Lopez ◽  
Yves Colin ◽  
...  

The conserved family of AMT/Rh proteins facilitates ammonium transport across animal, plant, and microbial membranes. A bacterial homologue, AmtB, forms a channel-like structure and appears to function as an NH3 gas channel. To evaluate the function of eukaryotic homologues, the human RhCG glycoprotein and the tomato plant ammonium transporter LeAMT1;2 were expressed and compared in Xenopus oocytes and yeast. RhCG mediated the electroneutral transport of methylammonium (MeA), which saturated with Km = 3.8 mM at pHo 7.5. Uptake was strongly favored by increasing the pHo and was inhibited by ammonium. Ammonium induced rapid cytosolic alkalinization in RhCG-expressing oocytes. Additionally, RhCG expression was associated with an alkali-cation conductance, which was not significantly permeable to NH4+ and was apparently uncoupled from the ammonium transport. In contrast, expression of the homologous LeAMT1;2 induced pHo-independent MeA+ uptake and specific NH4+ and MeA+ currents that were distinct from endogenous currents. The different mechanisms of transport, including the RhCG-associated alkali-cation conductance, were verified by heterologous expression in appropriate yeast strains. Thus, homologous AMT/Rh-type proteins function in a distinct manner; while LeAMT1;2 carries specifically NH4+, or cotransports NH3/H+, RhCG mediates electroneutral NH3 transport.


1984 ◽  
Vol 83 (1) ◽  
pp. 47-56 ◽  
Author(s):  
R Jacob ◽  
D Piwnica-Worms ◽  
C R Horres ◽  
M Lieberman

Transmembrane electroneutral transport mechanisms [e.g., Na/H exchange, Cl/HCO3 exchange, (K + Cl) cotransport] have recently been identified in a wide variety of cell types. If these exchanges sum to give a net electroneutral Na/K exchange, they may hyperpolarize the membrane potential beyond the value calculated from the Mullins-Noda equation, provided the cell maintains steady state intracellular ionic concentrations. In extreme circumstances, the membrane potential could hyperpolarize beyond the potassium reversal potential. This effect is mediated by the electrogenic Na/K pump. If either Na or K exchanges electroneutrally against a third ion (e.g., Na/Ca exchange), then the exchange may depolarize the membrane potential.


2017 ◽  
Vol 149 (11) ◽  
pp. 1009-1028 ◽  
Author(s):  
Dylan J. Meyer ◽  
Craig Gatto ◽  
Pablo Artigas

Primary aldosteronism, a condition in which too much aldosterone is produced and that leads to hypertension, is often initiated by an aldosterone-producing adenoma within the zona glomerulosa of the adrenal cortex. Somatic mutations of ATP1A1, encoding the Na/K pump α1 subunit, have been found in these adenomas. It has been proposed that a passive inward current transported by several of these mutant pumps is a "gain-of-function" activity that produces membrane depolarization and concomitant increases in aldosterone production. Here, we investigate whether the inward current through mutant Na/K pumps is large enough to induce depolarization of the cells that harbor them. We first investigate inward currents induced by these mutations in Xenopus Na/K pumps expressed in Xenopus oocytes and find that these inward currents are similar in amplitude to wild-type outward Na/K pump currents. Subsequently, we perform a detailed functional evaluation of the human Na/K pump mutants L104R, delF100-L104, V332G, and EETA963S expressed in Xenopus oocytes. By combining two-electrode voltage clamp with [3H]ouabain binding, we measure the turnover rate of these inward currents and compare it to the turnover rate for outward current through wild-type pumps. We find that the turnover rate of the inward current through two of these mutants (EETA963S and L104R) is too small to induce significant cell depolarization. Electrophysiological characterization of another hyperaldosteronism-inducing mutation, G99R, reveals the absence of inward currents under many different conditions, including in the presence of the regulator FXYD1 as well as with mammalian ionic concentrations and body temperatures. Instead, we observe robust outward currents, but with significantly reduced affinities for intracellular Na+ and extracellular K+. Collectively, our results point to loss-of-function as the common mechanism for the hyperaldosteronism induced by these Na/K pump mutants.


Sign in / Sign up

Export Citation Format

Share Document