scholarly journals Neuroinflammatory mechanisms of blood-brain barrier damage in ischemic stroke

2019 ◽  
Vol 316 (2) ◽  
pp. C135-C153 ◽  
Author(s):  
Changjun Yang ◽  
Kimberly E. Hawkins ◽  
Sylvain Doré ◽  
Eduardo Candelario-Jalil

As part of the neurovascular unit, the blood-brain barrier (BBB) is a unique, dynamic regulatory boundary that limits and regulates the exchange of molecules, ions, and cells between the blood and the central nervous system. Disruption of the BBB plays an important role in the development of neurological dysfunction in ischemic stroke. Blood-borne substances and cells have restricted access to the brain due to the presence of tight junctions between the endothelial cells of the BBB. Following stroke, there is loss of BBB tight junction integrity, leading to increased paracellular permeability, which results in vasogenic edema, hemorrhagic transformation, and increased mortality. Thus, understanding principal mediators and molecular mechanisms involved in BBB disruption is critical for the development of novel therapeutics to treat ischemic stroke. This review discusses the current knowledge of how neuroinflammation contributes to BBB damage in ischemic stroke. Specifically, we provide an updated overview of the role of cytokines, chemokines, oxidative and nitrosative stress, adhesion molecules, matrix metalloproteinases, and vascular endothelial growth factor as well as the role of different cell types in the regulation of BBB permeability in ischemic stroke.

2020 ◽  
Vol 11 ◽  
Author(s):  
Keqing Nian ◽  
Ian C. Harding ◽  
Ira M. Herman ◽  
Eno E. Ebong

Ischemic stroke, a major cause of mortality in the United States, often contributes to disruption of the blood-brain barrier (BBB). The BBB along with its supportive cells, collectively referred to as the “neurovascular unit,” is the brain’s multicellular microvasculature that bi-directionally regulates the transport of blood, ions, oxygen, and cells from the circulation into the brain. It is thus vital for the maintenance of central nervous system homeostasis. BBB disruption, which is associated with the altered expression of tight junction proteins and BBB transporters, is believed to exacerbate brain injury caused by ischemic stroke and limits the therapeutic potential of current clinical therapies, such as recombinant tissue plasminogen activator. Accumulating evidence suggests that endothelial mechanobiology, the conversion of mechanical forces into biochemical signals, helps regulate function of the peripheral vasculature and may similarly maintain BBB integrity. For example, the endothelial glycocalyx (GCX), a glycoprotein-proteoglycan layer extending into the lumen of bloods vessel, is abundantly expressed on endothelial cells of the BBB and has been shown to regulate BBB permeability. In this review, we will focus on our understanding of the mechanisms underlying BBB damage after ischemic stroke, highlighting current and potential future novel pharmacological strategies for BBB protection and recovery. Finally, we will address the current knowledge of endothelial mechanotransduction in BBB maintenance, specifically focusing on a potential role of the endothelial GCX.


2020 ◽  
Vol 18 (12) ◽  
pp. 1213-1226
Author(s):  
Li Gao ◽  
Zhenghong Song ◽  
Jianhua Mi ◽  
Pinpin Hou ◽  
Chong Xie ◽  
...  

Ischemic stroke is one of the main causes of mortality and disability worldwide. However, efficient therapeutic strategies are still lacking. Stem/progenitor cell-based therapy, with its vigorous advantages, has emerged as a promising tool for the treatment of ischemic stroke. The mechanisms involve new neural cells and neuronal circuitry formation, antioxidation, inflammation alleviation, angiogenesis, and neurogenesis promotion. In the past decades, in-depth studies have suggested that cell therapy could promote vascular stabilization and decrease blood-brain barrier (BBB) leakage after ischemic stroke. However, the effects and underlying mechanisms on BBB integrity induced by the engrafted cells in ischemic stroke have not been reviewed yet. Herein, we will update the progress in research on the effects of cell therapy on BBB integrity after ischemic stroke and review the underlying mechanisms. First, we will present an overview of BBB dysfunction under the ischemic condition and cells engraftment for ischemic treatment. Then, we will summarize and discuss the current knowledge about the effects and underlying mechanisms of cell therapy on BBB integrity after ischemic stroke. In particular, we will review the most recent studies in regard to the relationship between cell therapy and BBB in tissue plasminogen activator (t-PA)-mediated therapy and diabetic stroke.


Author(s):  
Juntao Wang ◽  
Fang Xu ◽  
Xiaoming Zhu ◽  
Xianghua Li ◽  
Yankun Li ◽  
...  

The blood–brain barrier (BBB) is a highly specialized neurovascular unit that protects the brain from potentially harmful substances. In addition, the BBB also engages in the exchange of essential nutrients between the vasculature and brain parenchyma, which is critical for brain homeostasis. Brain diseases, including neurological disorders and cerebrovascular diseases, are often associated with disrupted BBB integrity, evidenced by increased permeability. Therefore, defining the mechanisms underlying the regulation of BBB integrity is crucial for the development of novel therapeutics targeting brain diseases. MicroRNAs (miRNA), a type of small non-coding RNAs, are emerging as an important regulator of BBB integrity. Here we review recent developments related to the role of miRNAs in regulating BBB integrity.


2020 ◽  
Vol 13 (626) ◽  
pp. eaay5686 ◽  
Author(s):  
Feifei Ma ◽  
Ping Sun ◽  
Xuejing Zhang ◽  
Milton H. Hamblin ◽  
Ke-Jie Yin

The blood-brain barrier (BBB) maintains a stable brain microenvironment. Breakdown of BBB integrity during cerebral ischemia initiates a devastating cascade of events that eventually leads to neuronal loss. MicroRNAs are small noncoding RNAs that suppress protein expression, and we previously showed that the miR-15a/16-1 cluster is involved in the pathogenesis of ischemic brain injury. Here, we demonstrated that when subjected to experimentally induced stroke, mice with an endothelial cell (EC)–selective deletion of miR-15a/16-1 had smaller brain infarcts, reduced BBB leakage, and decreased infiltration of peripheral immune cells. These mice also showed reduced infiltration of proinflammatory M1-type microglia/macrophage in the peri-infarct area without changes in the number of resolving M2-type cells. Stroke decreases claudin-5 abundance, and we found that EC-selective miR-15a/16-1 deletion enhanced claudin-5 mRNA and protein abundance in ischemic mouse brains. In cultured mouse brain microvascular ECs (mBMECs), the miR-15a/16-1 cluster directly bound to the 3′ untranslated region (3′UTR) of Claudin-5, and lentivirus-mediated ablation of miR-15a/16-1 diminished oxygen-glucose deprivation (OGD)–induced down-regulation of claudin-5 mRNA and protein abundance and endothelial barrier dysfunction. These findings suggest that genetic deletion of endothelial miR-15a/16-1 suppresses BBB pathologies after ischemic stroke. Elucidating the molecular mechanisms of miR-15a/16-1–mediated BBB dysfunction may enable the discovery of new therapies for ischemic stroke.


Stroke ◽  
2017 ◽  
Vol 48 (suppl_1) ◽  
Author(s):  
Shyanne Page ◽  
Ronak Patel ◽  
Abraham Alahmad

The blood-brain barrier (BBB) constitutes a component of the neurovascular unit formed by specialized brain microvascular endothelial cells (BMECs) surrounded by astrocytes, pericytes and neurons. During ischemic stroke injury, the BBB constitutes the first responding element resulting in the opening of the BBB and eventually neural cell death by excitotoxicity. A better understanding of the cellular mechanisms underlying the opening of the BBB during ischemic stroke is essential to identify targets to restore such barrier function after injury. Current in vitro models of the human BBB, based on primary or immortalized BMECs monocultures, display poor barrier properties but also lack one or two cellular components of the neurovascular unit.In this study, we designed an integrative in vitro model of the BBB by generating BMECs, astrocytes and neurons using patient-derived BMECs from two iPSC lines (IMR90-c4 and CTR66M). We were able to obtain all three cell types from these two cell lines. iPSC-derived BMECs showed barrier properties similar or better barrier function than hCMEC/D3 monolayer (an immortalized adult somatic BMEC). Furthermore, iPSC—derived astrocytes were capable to induce barrier properties in BMECs upon co-cultures. whereas iPSC-derived neurons were capable to form extensive and branched neurites. Upon OGD stress, iPSC-derived BMECs showed a disruption of their barrier function as early as 6 hours of OGD stress and showed a complete disruption by 24 hours. Such disruption was reversed by reoxygenation. Interestingly such barrier disruption occurs through a VEGF-independent mechanism. In the other hand, iPSC-derived neurons showed a significant decrease in cell metabolic activity preceding neurites pruning. Finally, astrocytes showed the most robust phenotype, as we noted no cell death by 24 hours OGD.In this study, we demonstrated the ability to differentiate three cell types from the same patient in two iPSC lines. We also demonstrated the ability of these cells to respond to OGD/reoxygenation stress in agreement with the current literature. We are currently investigating the molecular mechanisms by which OGD/reoxygenation drive the cellular response in these cell types.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Yanping Wang ◽  
Yufei Shen ◽  
Xin Yu ◽  
Jingxia Gu ◽  
Xiaoling Zhang ◽  
...  

We recently showed that inhibition of hypoxia-induced factor-1α (HIF-1α) decreased acute ischemic stroke-induced blood-brain barrier (BBB) damage. However, factors that induce the upregulation of HIF-1α expression remain unclear. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase played a critical role in reperfusion-induced BBB damage after stroke. However, the role of NADPH oxidase in BBB injury during the acute ischemia stage remains unclear. This study is aimed at investigating the role of NADPH oxidase in BBB injury and the expression of HIF-1α after acute ischemic stroke. A sutured middle cerebral artery occlusion (MCAO) model was used to mimic ischemic stroke in rats. Our results show that the inhibition of NADPH oxidase by apocynin can significantly reduce the BBB damage caused by 2 h ischemic stroke accompanied by reducing the degradation of tight junction protein occludin. In addition, treatment with apocynin significantly decreased the upregulation of HIF-1α induced by 2 h MCAO. More importantly, apocynin could also inhibit the MMP-2 upregulation. Of note, HIF-1α was not colocalized with a bigger blood vessel. Taken together, our results showed that inhibition of NADPH oxidase-mediated HIF-1α upregulation reduced BBB damage accompanied by downregulating MMP-2 expression and occludin degradation after 2 h ischemia stroke. These results explored the mechanism of BBB damage after acute ischemic stroke and may help reduce the associated cerebral hemorrhage transformation after thrombolysis and endovascular treatment after ischemic stroke.


2017 ◽  
Author(s):  
Montserrat Torres-Oliva ◽  
Julia Schneider ◽  
Gordon Wiegleb ◽  
Felix Kaufholz ◽  
Nico Posnien

AbstractThe development of different cell types must be tightly coordinated in different organs. The developing head of Drosophila melanogaster represents an excellent model to study the molecular mechanisms underlying this coordination because the eye-antennal imaginal discs contain the organ anlagen of nearly all adult head structures, such as the compound eyes or the antennae. We studied the genome wide gene expression dynamics during eye-antennal disc development in D. melanogaster to identify new central regulators of the underlying gene regulatory network. Expression based gene clustering and transcription factor motif enrichment analyses revealed a central regulatory role of the transcription factor Hunchback (Hb). We confirmed that hb is expressed in two polyploid retinal subperineurial glia cells (carpet cells). Our functional analysis shows that Hb is necessary for carpet cell development and loss of Hb function results in abnormal glia cell migration and photoreceptor axon guidance patterns. Additionally, we show for the first time that the carpet cells are an integral part of the blood-brain barrier.


2021 ◽  
Vol 10 (17) ◽  
pp. 3795
Author(s):  
Min Zhou ◽  
Samuel X. Shi ◽  
Ning Liu ◽  
Yinghua Jiang ◽  
Mardeen S. Karim ◽  
...  

Blood-brain barrier (BBB) disruption following ischemic stroke (IS) contributes to hemorrhagic transformation, brain edema, increased neural dysfunction, secondary injury, and mortality. Brain endothelial cells form a para and transcellular barrier to most blood-borne solutes via tight junctions (TJs) and rare transcytotic vesicles. The prevailing view attributes the destruction of TJs to the resulting BBB damage following IS. Recent studies define a stepwise impairment of the transcellular barrier followed by the paracellular barrier which accounts for the BBB leakage in IS. The increased endothelial transcytosis that has been proven to be caveolae-mediated, precedes and is independent of TJs disintegration. Thus, our understanding of post stroke BBB deficits needs to be revised. These recent findings could provide a conceptual basis for the development of alternative treatment strategies. Presently, our concept of how BBB endothelial transcytosis develops is incomplete, and treatment options remain limited. This review summarizes the cellular structure and biological classification of endothelial transcytosis at the BBB and reviews related molecular mechanisms. Meanwhile, relevant transcytosis-targeted therapeutic strategies for IS and research entry points are prospected.


2021 ◽  
Author(s):  
Yang Zhang ◽  
Xun Guo ◽  
Zhifeng Peng ◽  
Chang Liu ◽  
Lili Ren ◽  
...  

Abstract The molecular mechanisms of blood–brain barrier (BBB) disruption in the early stage after ischemic stroke are poorly understood. In the present study, we investigated the potential role of nicotinamide mononucleotide adenylyltransferase 1 (NMNAT1) in ischemia-induced BBB damage using an animal middle cerebral artery occlusion (MCAO) model of ischemic stroke. Recombinant human NMNAT1 (rh-NMNAT1) was administered intranasally and Sirtuin 1 (SIRT1) siRNA was administered by intracerebroventricular injection. Our results indicated that rh-NMNAT1 reduced infarct volume, improved functional outcome and decreased BBB permeability in mice after ischemic stroke. Furthermore, rh-NMNAT1 prevented the loss of tight junction proteins (occludin and claudin-5) and reduced cell apoptosis in ischemic microvessels. NMNAT1-mediated BBB permeability was correlated with the elevation of nicotinamide adenine dinucleotide (NAD+)/NADH and SIRT1 level in ischemic microvessels. In addition, rh-NMNAT1 treatment significantly decreased the levels of acetylated nuclear factor-κB, acetylated p53 and matrix metalloproteinase-9 in ischemic microvessels. Moreover, the protective effects of rh-NMNAT1 were reversed by SIRT1 siRNA. In conclusion, these findings indicate that NMNAT1 protects BBB after ischemic stroke in mice which was in part via the NAD+/SIRT1 signaling pathway in brain microvascular endothelial cells. NMNAT1 may be a novel potential therapeutic target for reducing BBB disruption after ischemic stroke.


2019 ◽  
Vol 13 (4) ◽  
pp. 420-426 ◽  
Author(s):  
Nikolay V. Tsygan ◽  
Alexandr P. Trashkov ◽  
Igor V. Litvinenko ◽  
Viktoriya A. Yakovleva ◽  
Alexandr V. Ryabtsev ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document