A novel β-adrenergic response element regulates both basal and agonist-induced expression of cyclin-dependent kinase 1 gene in cardiac fibroblasts

2014 ◽  
Vol 306 (6) ◽  
pp. C540-C550 ◽  
Author(s):  
Gerard J. Gaspard ◽  
Jessica MacLean ◽  
Danielle Rioux ◽  
Kishore B. S. Pasumarthi

Cardiac fibrosis, a known risk factor for heart disease, is typically caused by uncontrolled proliferation of fibroblasts and excessive deposition of extracellular matrix proteins in the myocardium. Cyclin-dependent kinase 1 (CDK1) is involved in the control of G2/M transit phase of the cell cycle. Here, we showed that isoproterenol (ISO)-induced cardiac fibrosis is associated with increased levels of CDK1 exclusively in fibroblasts in the adult mouse heart. Treatment of primary embryonic ventricular cell cultures with ISO (a nonselective β-adrenergic receptor agonist) increased CDK1 protein expression in fibroblasts and promoted their cell cycle activity. Quantitative PCR analysis confirmed that ISO increases CDK1 transcription in a transient manner. Further, the ISO-responsive element was mapped to the proximal −100-bp sequence of the CDK1 promoter region using various 5′-flanking sequence deletion constructs. Sequence analysis of the −100-bp CDK1 minimal promoter region revealed two putative nuclear factor-Y (NF-Y) binding elements. Overexpression of the NF-YA subunit in primary ventricular cultures significantly increased the basal activation of the −100-bp CDK1 promoter construct but not the ISO-induced transcription of the minimal promoter construct. In contrast, dominant negative NF-YA expression decreased the basal activity of the minimal promoter construct and ISO treatment fully rescued the dominant negative effects. Furthermore, site-directed mutagenesis of the distal NF-Y binding site in the −100-bp CDK1 promoter region completely abolished both basal and ISO-induced promoter activation of the CDK1 gene. Collectively, our results raise an exciting possibility that targeting CDK1 or NF-Y in the diseased heart may inhibit fibrosis and subsequently confer cardioprotection.

1999 ◽  
Vol 19 (7) ◽  
pp. 4843-4854 ◽  
Author(s):  
Heinz Ruffner ◽  
Wei Jiang ◽  
A. Grey Craig ◽  
Tony Hunter ◽  
Inder M. Verma

ABSTRACT BRCA1 is a cell cycle-regulated nuclear protein that is phosphorylated mainly on serine and to a lesser extent on threonine residues. Changes in phosphorylation occur in response to cell cycle progression and DNA damage. Specifically, BRCA1 undergoes hyperphosphorylation during late G1 and S phases of the cell cycle. Here we report that BRCA1 is phosphorylated in vivo at serine 1497 (S1497), which is part of a cyclin-dependent kinase (CDK) consensus site. S1497 can be phosphorylated in vitro by CDK2-cyclin A or E. BRCA1 coimmunoprecipitates with an endogenous serine-threonine protein kinase activity that phosphorylates S1497 in vitro. This cellular kinase activity is sensitive to transfection of a dominant negative form of CDK2 as well as the application of the CDK inhibitors p21 and butyrolactone I but not p16. Furthermore, BRCA1 coimmunoprecipitates with CDK2 and cyclin A. These results suggest that the endogenous kinase activity is composed of CDK2-cyclin complexes, at least in part, concordant with the G1/S-specific increase in BRCA1 phosphorylation.


2004 ◽  
Vol 383 (3) ◽  
pp. 529-536 ◽  
Author(s):  
Zoulika KHERROUCHE ◽  
Yvan DE LAUNOIT ◽  
Didier MONTE

E2F6 is widely expressed in human tissues and cell lines. Recent studies have demonstrated its involvement in developmental patterning and in the regulation of various genes implicated in chromatin remodelling. Despite a growing number of studies, nothing is really known concerning the E2F6 expression regulation. To understand how cells control E2F6 expression, we analysed the activity of the previously cloned promoter region of the human E2F6 gene. DNase I footprinting, gel electrophoreticmobility shift, transient transfection and site-directed mutagenesis experiments allowed the identification of two functional NRF-1/α-PAL (nuclear respiratory factor-1/α-palindrome-binding protein)-binding sites within the human E2F6 core promoter region, which are conserved in the mouse and rat E2F6 promoter region. Moreover, ChIP (chromatin immunoprecipitation) analysis demonstrated that overexpressed NRF-1/α-PAL is associated in vivo with the E2F6 promoter. Furthermore, overexpression of full-length NRF-1/α-PAL enhanced E2F6 promoter activity, whereas expression of its dominant-negative form reduced the promoter activity. Our results indicate that NRF-1/α-PAL is implicated in the regulation of basal E2F6 gene expression.


2004 ◽  
Vol 380 (3) ◽  
pp. 705-713 ◽  
Author(s):  
Ulla AAPOLA ◽  
Katja MÄENPÄÄ ◽  
Antti KAIPIA ◽  
Pärt PETERSON

Imprinted genes are expressed from a single allele due to differential methylation of maternal or paternal alleles during gametogenesis. Dnmt3L (DNA cytosine-5-methyltransferase 3 like), a member of de novo methyltransferase Dnmt3 protein family, is a regulator of maternal imprinting. In the present study, we have characterized the promoter region of the mouse Dnmt3L gene. Transient transfection assays performed with 5´-deletion promoter constructs indicated a minimal promoter area within 440 bp upstream from the translational start site. Longer promoter constructs showed decreased activity, suggesting the presence of repressor elements within the upstream sequences. According to electrophoretic mobility-shift assays and mutation analysis, the minimal promoter region contained four functional binding sites for the Sp1 (specificity protein 1) family of transcription factors, Sp1 and Sp3. In vitro methylation of Dnmt3L promoter constructs decreased the transcriptional activity significantly, demonstrating down-regulation by cytosine methylation. This was supported by the results from bisulphite sequencing and real-time quantitative reverse transcriptase–PCR analysis of different mouse cell lines and tissues. In testis and embryonic stem cells showing strong Dnmt3L expression, all CpG sites studied were fully unmethylated, whereas non-expressive cell lines and tissues with lesser Dnmt3L expression showed complete or diverse CpG methylation levels. Treatment of Dnmt3L non-expressive cell lines with deacetylase inhibitor trichostatin A and methyltransferase inhibitor 5-aza-2´-deoxycytidine induced the expression of Dnmt3L mRNA. Furthermore, we show that the repressional effect of longer promoter fragments was also relieved by these inhibitors, altogether indicating an epigenetic control for Dnmt3L gene regulation.


2020 ◽  
Vol 88 (1) ◽  
Author(s):  
Hayati MINARSIH ◽  
Sonny SUHANDONO ◽  
Anissa K FUADI ◽  
Tati KRISTIANTI ◽  
Riza A PUTRANTO ◽  
...  

The development of molecular biology techniques nowadays has enabled to engineer drought tolerant sugarcane by genetic engineering to accelerate the breeding program. Dehydrin (DHN) is known to have an important role in plant response and adaptation to abiotic stresses (drought, high salinity, cold, heat, etc.). While plant tissues are subjected to drought stress (dehydration), DHN protein is accumulated to high content throughout all vegetative or generative tissues. The research aimed to isolate and characterize the DHN promoter from sugarcane that can be used as transformation material in generating drought tolerant sugarcane. Specific primers for DHN promoter amplification were designed and DHN promoter region was successfully isolated by PCR cloning method. Two putative promoter sequences were identified namely Pr-1DHNSo and Pr-2DHNSo. In silicoanalyses were carried out and cis-regulatory elements motifs that play a role in adaptation on abiotic stress as well as biotic stress including ABRE, MBS, CGTCA-motif, TGACG-motif, GARE-motif, P-box TCA-element and Box-W1 were identified. The promoter Pr-1DHNSo was then cloned into pBI121 expression vector by Overlap Extention PCR (OE-PCR) for further characterization. Functional test of the promoter construct pBI- Pr-1DHNSo was conducted through Agrobacterium transformation into sugarcane calli. GUS assay and PCR analysis showed that the DHN promoter was transformed and expressed in the sugarcane calli.


2021 ◽  
pp. 096032712110387
Author(s):  
Jian Kang ◽  
Xu Huang ◽  
Weiguo Dong ◽  
Xueying Zhu ◽  
Ming Li ◽  
...  

This study is aimed to investigate the role of long non-coding RNA 630 (LINC00630) in hepatocellular carcinoma (HCC). Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to examine LINC00630 expression in HCC cell lines and tissues. After LINC00630 was overexpressed or depleted in HCC cell lines, cell counting kit-8 (CCK-8) assay, BrdU assay, and flow cytometry were conducted for detecting HCC cell multiplication, apoptosis, and cell cycle progression. The catRAPID database was adopted to predict the binding relationship between LINC00630 and E2F transcription factor 1 (E2F1), and RNA pull-down and RNA immunoprecipitation (RIP) assays were carried out to verify this binding relationship. The binding of E2F1 to the cyclin-dependent kinase 2 (CDK2) promoter region was verified by dual-luciferase reporter gene assay and chromatin immunoprecipitation-quantitative polymerase chain reaction (ChIP-qPCR) assay. Western blotting was conducted to detect the protein expression of E2F1 and CDK2 in HCC cells. We report that LINC00630 expression was up-regulated in HCC and was significantly correlated with TNM stage and lymph node metastasis. LINC00630 overexpression facilitated HCC cell proliferation and cell cycle progression and inhibited the cell apoptosis, while LINC00630 knockdown had the opposite effects. LINC00630 directly bounds with E2F1. LINC00630 overexpression enhanced the binding of E2F1 to the CDK2 promoter region, thereby promoting CDK2 transcription, whereas knocking down LINC00630 inhibited CDK2 transcription. Collectively, LINC00630 promoted CDK2 transcription by recruiting E2F1 to the promoter region of CDK2, thereby promoting the malignant progression of HCC. Our data suggest that LINC00630 is a promising molecular target for HCC.


1999 ◽  
Vol 181 (2) ◽  
pp. 541-551 ◽  
Author(s):  
Tracey C. Householder ◽  
Wesley A. Belli ◽  
Sarah Lissenden ◽  
Jeffrey A. Cole ◽  
Virginia L. Clark

ABSTRACT AniA (formerly Pan1) is the major anaerobically induced outer membrane protein in Neisseria gonorrhoeae. AniA has been shown to be a major antigen in patients with gonococcal disease, and we have been studying its regulation in order to understand the gonococcal response to anaerobiosis and its potential role in virulence. This study presents a genetic analysis of aniA regulation. Through deletion analysis of the upstream region, we have determined the minimal promoter region necessary for aniA expression. This 130-bp region contains a sigma 70-type promoter and an FNR (fumarate and nitrate reductase regulator protein) binding site, both of which are absolutely required for anaerobic expression. Also located in the minimal promoter region are three T-rich direct repeats and several potential NarP binding sites. This 80-bp region is required for induction by nitrite. By site-directed mutagenesis of promoter sequences, we have determined that the transcription ofaniA is initiated only from the sigma 70-type promoter. The gearbox promoter, previously believed to be the major promoter, does not appear to be active during anaerobiosis. The gonococcal FNR and NarP homologs are involved in the regulation of aniA, and we demonstrate that placing aniA under the control of thetac promoter compensates for the inability of a gonococcalfnr mutant to grow anaerobically.


Genetics ◽  
2003 ◽  
Vol 165 (3) ◽  
pp. 1105-1115
Author(s):  
Xiaowei Dou ◽  
Dongliang Wu ◽  
Weiling An ◽  
Jonathan Davies ◽  
Shahr B Hashmi ◽  
...  

Abstract Unlike Pho85 of Saccharomyces cerevisiae, the highly related PHOA cyclin-dependent kinase (CDK) of Aspergillus nidulans plays no role in regulation of enzymes involved in phosphorous acquisition but instead modulates differentiation in response to environmental conditions, including limited phosphorous. Like PHO85, Aspergillus phoA is a nonessential gene. However, we find that expression of dominant-negative PHOA inhibits growth, suggesting it may have an essential but redundant function. Supporting this we have identified another cyclin-dependent kinase, PHOB, which is 77% identical to PHOA. Deletion of phoB causes no phenotype, even under phosphorous-limited growth conditions. To investigate the function of phoA/phoB, double mutants were selected from a cross of strains containing null alleles and by generating a temperature-sensitive allele of phoA in a ΔphoB background. Double-deleted ascospores were able to germinate but had a limited capacity for nuclear division, suggesting a cell cycle defect. Longer germination revealed morphological defects. The temperature-sensitive phoA allele caused both nuclear division and polarity defects at restrictive temperature, which could be complemented by expression of mammalian CDK5. Therefore, an essential function exists in A. nidulans for the Pho85-like kinase pair PHOA and PHOB, which may involve cell cycle control and morphogenesis.


Genetics ◽  
2003 ◽  
Vol 165 (2) ◽  
pp. 489-503 ◽  
Author(s):  
Karen E Ross ◽  
Orna Cohen-Fix

Abstract Cdh1p, a substrate specificity factor for the cell cycle-regulated ubiquitin ligase, the anaphase-promoting complex/cyclosome (APC/C), promotes exit from mitosis by directing the degradation of a number of proteins, including the mitotic cyclins. Here we present evidence that Cdh1p activity at the M/G1 transition is important not only for mitotic exit but also for high-fidelity chromosome segregation in the subsequent cell cycle. CDH1 showed genetic interactions with MAD2 and PDS1, genes encoding components of the mitotic spindle assembly checkpoint that acts at metaphase to prevent premature chromosome segregation. Unlike cdh1Δ and mad2Δ single mutants, the mad2Δ cdh1Δ double mutant grew slowly and exhibited high rates of chromosome and plasmid loss. Simultaneous deletion of PDS1 and CDH1 caused extensive chromosome missegregation and cell death. Our data suggest that at least part of the chromosome loss can be attributed to kinetochore/spindle problems. Our data further suggest that Cdh1p and Sic1p, a Cdc28p/Clb inhibitor, have overlapping as well as nonoverlapping roles in ensuring proper chromosome segregation. The severe growth defects of both mad2Δ cdh1Δ and pds1Δ cdh1Δ strains were rescued by overexpressing Swe1p, a G2/M inhibitor of the cyclin-dependent kinase, Cdc28p/Clb. We propose that the failure to degrade cyclins at the end of mitosis leaves cdh1Δ mutant strains with abnormal Cdc28p/Clb activity that interferes with proper chromosome segregation.


2021 ◽  
Vol 7 (23) ◽  
pp. eabg0007
Author(s):  
Deniz Pirincci Ercan ◽  
Florine Chrétien ◽  
Probir Chakravarty ◽  
Helen R. Flynn ◽  
Ambrosius P. Snijders ◽  
...  

Two models have been put forward for cyclin-dependent kinase (Cdk) control of the cell cycle. In the qualitative model, cell cycle events are ordered by distinct substrate specificities of successive cyclin waves. Alternatively, in the quantitative model, the gradual rise of Cdk activity from G1 phase to mitosis leads to ordered substrate phosphorylation at sequential thresholds. Here, we study the relative contributions of qualitative and quantitative Cdk control in Saccharomyces cerevisiae. All S phase and mitotic cyclins can be replaced by a single mitotic cyclin, albeit at the cost of reduced fitness. A single cyclin can also replace all G1 cyclins to support ordered cell cycle progression, fulfilling key predictions of the quantitative model. However, single-cyclin cells fail to polarize or grow buds and thus cannot survive. Our results suggest that budding yeast has become dependent on G1 cyclin specificity to couple cell cycle progression to essential morphogenetic events.


Sign in / Sign up

Export Citation Format

Share Document