scholarly journals cGMP-dependent protein kinase II determines β-catenin accumulation that is essential for uterine decidualization in mice

2019 ◽  
Vol 317 (6) ◽  
pp. C1115-C1127
Author(s):  
Yang Zhang ◽  
Lu Yan ◽  
Jiali Liu ◽  
Sheng Cui ◽  
Jingtao Qiu

In the early phase of pregnancy, decidualization is an indispensable event after mammal embryo implantation, accompanied by proliferation and differentiation of uterine stromal cells. Type II cGMP-dependent protein kinase (Prkg2) belongs to the family of serine/threonine kinase, which plays multiple roles in cellular signaling pathways to control proliferation and differentiation. However, the regulatory function and molecular mechanism of Prkg2 in decidualization are still unknown. In this study, we show that Prkg2 has a gradually increased expression pattern during peri-implantation and artificial decidualization, and the expression of Prkg2 is induced by estrogen and progesterone in the ovariectomized mouse uteri and primary cultured uterine stromal cells, the process of which is blocked by treating with estrogen receptor (ER) antagonist (ICI-182,780) and progesterone receptor (PR) antagonist (RU-486). Inhibition of Prkg2 activity by HA-100 promotes uterine stromal cell proliferation but compromises decidualization with decreased expression of prolactin family 8, subfamily a, member 2. In addition, the functional regulation of decidualization by Prkg2 is accomplished by its induced phosphorylation of glycogen synthase kinase-3β (GSK-3β) at serine-9, which results in accumulation of β-catenin in the decidual cells. Taken together, our findings demonstrate that estrogen and progesterone upregulate the expression of Prkg2 in uterine stromal cells depending on ER and PR; Prkg2 promotes phosphorylation of GSK-3β at serine-9 and inactivates it, leading to the accumulation of β-catenin and promoting the process of decidualization. In addition to revealing the regulatory mechanism of Prkg2 that ensures the success of uterine decidualization, our findings will contribute to the understanding in the maintenance of early pregnancy.

2008 ◽  
Vol 118 (8) ◽  
pp. 2986-2986 ◽  
Author(s):  
Yosuke Kawasaki ◽  
Fumitaka Kugimiya ◽  
Hirotaka Chikuda ◽  
Satoru Kamekura ◽  
Toshiyuki Ikeda ◽  
...  

Hypertension ◽  
1996 ◽  
Vol 27 (3) ◽  
pp. 552-557 ◽  
Author(s):  
Naohisa Tamura ◽  
Hiroshi Itoh ◽  
Yoshihiro Ogawa ◽  
Osamu Nakagawa ◽  
Masaki Harada ◽  
...  

2020 ◽  
Vol 22 (1) ◽  
pp. 52
Author(s):  
Mirja Koch ◽  
Constanze Scheel ◽  
Hongwei Ma ◽  
Fan Yang ◽  
Michael Stadlmeier ◽  
...  

Mutations in the CNGA3 gene, which encodes the A subunit of the cyclic guanosine monophosphate (cGMP)-gated cation channel in cone photoreceptor outer segments, cause total colour blindness, also referred to as achromatopsia. Cones lacking this channel protein are non-functional, accumulate high levels of the second messenger cGMP and degenerate over time after induction of ER stress. The cell death mechanisms that lead to loss of affected cones are only partially understood. Here, we explored the disease mechanisms in the Cnga3 knockout (KO) mouse model of achromatopsia. We found that another important effector of cGMP, the cGMP-dependent protein kinase 2 (Prkg2) is crucially involved in cGMP cytotoxicity of cones in Cnga3 KO mice. Virus-mediated knockdown or genetic ablation of Prkg2 in Cnga3 KO mice counteracted degeneration and preserved the number of cones. Analysis of markers of endoplasmic reticulum stress and unfolded protein response confirmed that induction of these processes in Cnga3 KO cones also depends on Prkg2. In conclusion, we identified Prkg2 as a novel key mediator of cone photoreceptor degeneration in achromatopsia. Our data suggest that this cGMP mediator could be a novel pharmacological target for future neuroprotective therapies.


Sign in / Sign up

Export Citation Format

Share Document