Cell volume increase and extracellular Ca2+ are needed for hyposmotically induced prolactin release in tilapia

2003 ◽  
Vol 284 (5) ◽  
pp. C1280-C1289 ◽  
Author(s):  
A. P. Seale ◽  
N. H. Richman ◽  
T. Hirano ◽  
I. Cooke ◽  
E. G. Grau

In the tilapia ( Oreochromis mossambicus), as in many euryhaline teleost fish, prolactin (PRL) plays a central role in freshwater adaptation, acting on osmoregulatory surfaces to reduce ion and water permeability and increase solute retention. Consistent with these actions, PRL release is stimulated as extracellular osmolality is reduced both in vivo and in vitro. In the current experiments, a perfusion system utilizing dispersed PRL cells was developed for permitting the simultaneous measurement of cell volume and PRL release. Intracellular Ca2+ was monitored using fura 2-loaded cells under the same conditions. When PRL cells were exposed to hyposmotic medium, an increase in PRL cell volume preceded the increase in PRL release. Cell volume increased in proportion to decreases of 15 and 30% in osmolality. However, regulatory volume decrease was clearly seen only after a 30% reduction. The hyposmotically induced PRL release was sharply reduced in Ca2+-deleted hyposmotic medium, although cell volume changes were identical to those observed in normal hyposmotic medium. In most cells, a rise in intracellular Ca2+ concentration ([Ca2+]i) during hyposmotic stimulation was dependent on the availability of extracellular Ca2+, although small transient increases in [Ca2+]i were sometimes observed upon introduction of Ca2+-deleted media of the same or reduced osmolality. These results indicate that an increase in cell size is a critical step in the transduction of an osmotic signal into PRL release and that the hyposmotically induced increase in PRL release is greatly dependent on extracellular Ca2+.

2002 ◽  
Vol 283 (1) ◽  
pp. C315-C326 ◽  
Author(s):  
Claire H. Mitchell ◽  
Johannes C. Fleischhauer ◽  
W. Daniel Stamer ◽  
K. Peterson-Yantorno ◽  
Mortimer M. Civan

The volume of certain subpopulations of trabecular meshwork (TM) cells may modify outflow resistance of aqueous humor, thereby altering intraocular pressure. This study examines the contribution that Na+/H+, Cl−/HCO[Formula: see text]exchange, and K+-Cl− efflux mechanisms have on the volume of TM cells. Volume, Cl− currents, and intracellular Ca2+ activity of cultured human TM cells were studied with calcein fluorescence, whole cell patch clamping, and fura 2 fluorescence, respectively. At physiological bicarbonate concentration, the selective Na+/H+ antiport inhibitor dimethylamiloride reduced isotonic cell volume. Hypotonicity triggered a regulatory volume decrease (RVD), which could be inhibited by the Cl− channel blocker 5-nitro-2-(3-phenylpropylamino)-benzoate (NPPB), the K+channel blockers Ba2+ and tetraethylammonium, and the K+-Cl− symport blocker [(dihydroindenyl)oxy]alkanoic acid. The fluid uptake mechanism in isotonic conditions was dependent on bicarbonate; at physiological levels, the Na+/H+ exchange inhibitor dimethylamiloride reduced cell volume, whereas at low levels the Na+-K+-2Cl− symport inhibitor bumetanide had the predominant effect. Patch-clamp measurements showed that hypotonicity activated an outwardly rectifying, NPPB-sensitive Cl− channel displaying the permeability ranking Cl− > methylsulfonate > aspartate. 2,3-Butanedione 2-monoxime antagonized actomyosin activity and both increased baseline [Ca2+] and abolished swelling-activated increase in [Ca2+], but it did not affect RVD. Results indicate that human TM cells display a Ca2+-independent RVD and that volume is regulated by swelling-activated K+ and Cl− channels, Na+/H+ antiports, and possibly K+-Cl− symports in addition to Na+-K+-2Cl− symports.


1999 ◽  
Vol 276 (3) ◽  
pp. E596-E601 ◽  
Author(s):  
Darya Sarfaraz ◽  
Cosmo L. Fraser

Astrocytes initially swell when exposed to hypotonic medium but rapidly return to normal volume by the process of regulatory volume decrease (RVD). The role that arginine vasopressin (AVP) plays in hypotonically mediated RVD in astrocytes is unknown. This study was therefore designed to determine whether AVP might play a role in astrocyte RVD. With the use of 3- O-[3H]methyl-d-glucose to determine water space, AVP treatment resulted in significantly increased 3- O-methyl-d-glucose water space within 30 s of hypotonic exposure ( P = 0.0001) and remained significantly elevated above baseline (1.75 μl/mg protein) at 5 min ( P < 0.021). In contrast, in untreated cells, complete RVD was achieved by 5 min. At 30 s, cell volume with AVP treatment was 37% greater than in cells that received no treatment (2.9 vs. 2.26 μl/mg protein, respectively; P < 0.006). The rate of cell volume increase (dV/d t) over 30 s was highly significant (0.038 vs. 0.019 μl ⋅ mg protein−1 ⋅ s−1in the AVP-treated vs. untreated group; P = 0.0004 by regression analysis). Additionally, the rate of cell volume decrease over the next 4.5 min was also significantly greater with vasopressin treatment (−dV/d t = 0.0027 vs. 0.0013 μl ⋅ mg protein−1 ⋅ s−1; P = 0.0306). The effect of AVP was concentration dependent with EC50= 3.5 nM. To determine whether AVP action was receptor mediated, we performed RVD studies in the presence of the V1-receptor antagonists benzamil and ethylisopropryl amiloride and the V2-receptor agonist 1-desamino-8-d-arginine vasopressin (DDAVP). Both V1-receptor antagonists significantly inhibited AVP-mediated volume increase by 40–47% ( P < 0.005), whereas DDAVP had no stimulatory effects above control. Taken together, these data suggest that AVP treatment of brain astrocytes in culture appears to increase 3- O-methyl-d-glucose water space during RVD through V1receptor-mediated mechanisms. The significance of these findings is presently unclear.


2002 ◽  
Vol 283 (4) ◽  
pp. G932-G937 ◽  
Author(s):  
Geraldine S. Orlando ◽  
Nelia A. Tobey ◽  
Paul Wang ◽  
Solange Abdulnour-Nakhoul ◽  
Roy C. Orlando

In vivo human esophageal epithelial cells are regularly exposed to hyposmolal stress. This stress, however, only becomes destructive when the surface epithelial cell (barrier) layers are breached and there is contact of the hyposmolal solution with the basolateral cell membranes. The present investigation was designed to examine the effects of hyposmolal stress in the latter circumstance using as a model for human esophageal epithelial cells the noncancer-derived HET-1A cell line. Cell volume and the response to hyposmolal stress in suspensions of HET-1A cells were determined by cell passage through a Coulter Counter Multisizer II. HET-1A cells behaved as osmometers over the range of 280 to 118 mosmol/kgH2O with rapid increases in cell volume ≤15–20% above baseline. Following swelling, the cells exhibited regulatory volume decrease (RVD), restoring baseline volume within 30 min, despite continued hyposmolal stress. With the use of pharmacologic agents and ion substitutions, RVD appeared to result from rapid activation of parallel K+and Cl−conductance pathways and this was subsequently joined by activation of a KCl cotransporter. Exposure to hyposmolal stress in an acidic environment, pH 6.6, inhibited, but did not abolish, RVD. These data indicate that human esophageal epithelial cells can protect against hyposmolal stress by RVD and that the redundancy in mechanisms may, to some extent, serve as added protection in patients with reflux disease when hyposmolal stress may occur in an acidic environment.


2007 ◽  
Vol 292 (4) ◽  
pp. L915-L923 ◽  
Author(s):  
Jaime Chávez ◽  
Patricia Segura ◽  
Mario H. Vargas ◽  
José Luis Arreola ◽  
Edgar Flores-Soto ◽  
...  

Organophosphates induce bronchoobstruction in guinea pigs, and salbutamol only transiently reverses this effect, suggesting that it triggers additional obstructive mechanisms. To further explore this phenomenon, in vivo (barometric plethysmography) and in vitro (organ baths, including ACh and substance P concentration measurement by HPLC and immunoassay, respectively; intracellular Ca2+ measurement in single myocytes) experiments were performed. In in vivo experiments, parathion caused a progressive bronchoobstruction until a plateau was reached. Administration of salbutamol during this plateau decreased bronchoobstruction up to 22% in the first 5 min, but thereafter airway obstruction rose again as to reach the same intensity as before salbutamol. Aminophylline caused a sustained decrement (71%) of the parathion-induced bronchoobstruction. In in vitro studies, paraoxon produced a sustained contraction of tracheal rings, which was fully blocked by atropine but not by TTX, ω-conotoxin (CTX), or epithelium removal. During the paraoxon-induced contraction, salbutamol caused a temporary relaxation of ∼50%, followed by a partial recontraction. This paradoxical recontraction was avoided by the M2- or neurokinin-1 (NK1)-receptor antagonists (methoctramine or AF-DX 116, and L-732138, respectively), accompanied by a long-lasting relaxation. Forskolin caused full relaxation of the paraoxon response. Substance P and, to a lesser extent, ACh released from tracheal rings during 60-min incubation with paraoxon or physostigmine, respectively, were significantly increased when salbutamol was administered in the second half of this period. In myocytes, paraoxon did not produce any change in the intracellular Ca2+ basal levels. Our results suggested that: 1) organophosphates caused smooth muscle contraction by accumulation of ACh released through a TTX- and CTX-resistant mechanism; 2) during such contraction, salbutamol relaxation is functionally antagonized by the stimulation of M2 receptors; and 3) after this transient salbutamol-induced relaxation, a paradoxical contraction ensues due to the subsequent release of substance P.


2018 ◽  
Vol 120 (3) ◽  
pp. 973-984 ◽  
Author(s):  
Vanina Netti ◽  
Alejandro Pizzoni ◽  
Martha Pérez-Domínguez ◽  
Paula Ford ◽  
Herminia Pasantes-Morales ◽  
...  

Neuronal activity in the retina generates osmotic gradients that lead to Müller cell swelling, followed by a regulatory volume decrease (RVD) response, partially due to the isoosmotic efflux of KCl and water. However, our previous studies in a human Müller cell line (MIO-M1) demonstrated that an important fraction of RVD may also involve the efflux of organic solutes. We also showed that RVD depends on the swelling-induced Ca2+ release from intracellular stores. Here we investigate the contribution of taurine (Tau) and glutamate (Glu), the most relevant amino acids in Müller cells, to RVD through the volume-regulated anion channel (VRAC), as well as their Ca2+ dependency in MIO-M1 cells. Swelling-induced [3H]Tau/[3H]Glu release was assessed by radiotracer assays and cell volume by fluorescence videomicroscopy. Results showed that cells exhibited an osmosensitive efflux of [3H]Tau and [3H]Glu (Tau > Glu) blunted by VRAC inhibitors 4-(2-butyl-6,7-dichloro-2-cyclopentylindan-1-on-5-yl)-oxybutyric acid and carbenoxolone reducing RVD. Only [3H]Tau efflux was mainly dependent on Ca2+ release from intracellular stores. RVD was unaffected in a Ca2+-free medium, probably due to Ca2+-independent Tau and Glu release, but was reduced by chelating intracellular Ca2+. The inhibition of phosphatidylinositol-3-kinase reduced [3H]Glu efflux but also the Ca2+-insensitive [3H]Tau fraction and decreased RVD, providing evidence of the relevance of this Ca2+-independent pathway. We propose that VRAC-mediated Tau and Glu release has a relevant role in RVD in Müller cells. The observed disparities in Ca2+ influence on amino acid release suggest the presence of VRAC isoforms that may differ in substrate selectivity and regulatory mechanisms, with important implications for retinal physiology. NEW & NOTEWORTHY The mechanisms for cell volume regulation in retinal Müller cells are still unknown. We show that swelling-induced taurine and glutamate release mediated by the volume-regulated anion channel (VRAC) largely contributes the to the regulatory volume decrease response in a human Müller cell line. Interestingly, the hypotonic-induced efflux of these amino acids exhibits disparities in Ca2+-dependent and -independent regulatory mechanisms, which strongly suggests that Müller cells may express different VRAC heteromers formed by the recently discovered leucine-rich repeat containing 8 (LRRC8) proteins.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Hiroko Wakimoto ◽  
Ronny Alcalai ◽  
Lei Song ◽  
Michael Arad ◽  
Christine E Seidman ◽  
...  

Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a familial arrhythmia syndrome caused by mutations in the ryanodine receptor (RyR2) or calsequestrin-2 (CASQ2) genes and characterized by exercise or emotional stress-induced sudden death. Beta-adrenergic blockers are only partially effective and other agents have not been widely tested. Recent studies have shown that CPVT is mediated by increased Ca 2+ leak through the RyR2 channel. Our aim was to determine whether agents that inhibit intracellular Ca 2+ leak can effectively prevent CPVT. Methods: The efficacy of intraperitoneal (IP) propranolol (1mcg/g), Mg 2+ (0.002mEq/g), verapamil (8 mcg/g) and diltiazem (8 mcg/g) were tested both in vivo and in vitro using CASQ2 mutant mouse CPVT model. In vivo studies included ambulatory ECG recordings at rest and following epinephrine stress (0.4 mcg/g IP) at baseline and after study drug administration. Experiments for each drug were performed on separate days to avoid confounding effects. In vitro studies included intracellular Ca 2+ transient analysis on isolated cardiomyocytes from mutant mice with and without epinephrine (5.5 μM). Results: All 4 drugs restored sinus rhythm and reduced the frequency of VT episodes induced by epinephrine in CASQ2 mutant mice. Only verapamil completely prevented epinephrine-induced VT in 87% of the mice (p<0.01). Cardiomyocyte studies in basal conditions revealed that Mg 2+ and verapamil inhibited sarcomere contraction and normalized the prolonged Ca 2+ reuptake period in CASQ2 mutants, but did not decrease baseline Ca 2+ peak height. Epinephrine-stressed mutant myocytes had increased diastolic Ca 2+ levels, lower Ca 2+ peak height and spontaneous SR Ca 2+ release events that were partially prevented by verapamil and Mg 2+ . Verapamil was more effective than Mg 2+ in reducing the frequency of spontaneous Ca 2+ releases induced by epinephrine. Conclusions: All 4 agents can inhibit ventricular arrhythmia in CPVT mouse model; however verapamil appears most effective in preventing arrhythmia in vivo and in modifying intracellular abnormal calcium handling. Calcium antagonists might have therapeutic value in CPVT and other RyR2-mediated arrhythmias and should be considered for human clinical studies.


1990 ◽  
Vol 259 (6) ◽  
pp. F950-F960 ◽  
Author(s):  
N. A. McCarty ◽  
R. G. O'Neil

The mechanism underlying the activation of hypotonic cell volume regulation was studied in rabbit proximal straight tubule (PST). When isolated non-perfused tubules were exposed to hypotonic solution, cells swelled rapidly and then underwent a regulatory volume decrease (RVD). The extent of regulation after swelling was highly dependent on extracellular Ca concentration ([Ca2+]o), with a half-maximal inhibition (K1/2) for [Ca2+]o of approximately 100 microM. RVD was blocked by the Ca-channel blockers verapamil, lanthanum, and the dihydropyridines (DHP) nifedipine and nitrendipine, implicating voltage-activated Ca channels in the RVD response. Using the fura-2 fluorescence-ratio technique, we observed that cell swelling caused a sustained rise in intracellular Ca ([Ca2+]i) only when [Ca2+]o was normal (1 mM) but not when [Ca2+]o was low (1-10 microM). Furthermore, external Ca was required early on during swelling to induce RVD. If RVD was initially blocked by reducing [Ca2+]o or by addition of verapamil during hypotonic swelling, volume regulation could only be restored by subsequently inducing Ca entry within the first 1 min or less of exposure to hypotonic solution. These data indicate a "calcium window" of less than 1 min, during which RVD is sensitive to Ca, and that part of the Ca-dependent mechanism responsible for achieving RVD undergoes inactivation after swelling. It is concluded that RVD in rabbit PST is modulated by Ca via a DHP-sensitive mechanism in a time-dependent manner.


1981 ◽  
Vol 240 (3) ◽  
pp. R211-R219 ◽  
Author(s):  
M. M. Sayeed ◽  
R. J. Adler ◽  
I. H. Chaudry ◽  
A. E. Baue

In this study we investigated in vivo changes in hepatic cellular electrolytes and resting transmembrane potentials (Em) during hemorrhagic shock. Hepatic Na-K transport and cell volume regulation were assessed in vitro. Rats were bled and the ensuing hypotension (40 mmHg) was maintained by returning 25-30% (intermediate-shock, IS) or 55-60% (late-shock, LS) of the shed blood. We resuscitated IS rats by reinfusion of all of the remaining shed blood and Ringer's lactate solution. Hepatic cellular Na and Cl increased and K decreased progressively with shock. Resuscitation of IS rats restored cell K and Cl but not Na to preshock levels. Em decreased from the control average value of -40 (mV) to -31 in IS and -19 in LS. Em was partially restored (-36 mV) after resuscitation. We evaluated changes in relative membrane permeability to Na and K (PNa/PK) with shock by assuming Em either to be a Na-K exchange diffusion potential or due to an unequally coupled movement of Na and K. These evaluations show a lack of effect of shock (IS, with or without resuscitation) on PNa/PK. Our observations are compatible with failure of an electrogenic Na pump in shock. This may be related to loss of hepatic cell volume regulation in shock.


1987 ◽  
Vol 252 (6) ◽  
pp. H1203-H1210
Author(s):  
J. W. Horton

An in vitro myocardial slice technique was used to quantitate alterations in cell volume regulation and membrane integrity after 2 h of hemorrhagic shock. After in vitro incubation in Krebs-Ringer-phosphate medium containing trace [14C]inulin, values (ml H2O/g dry wt) for control nonshocked myocardial slices were 4.03 +/- 0.11 (SE) for total water, 2.16 +/- 0.07 for inulin impermeable space, and 1.76 +/- 0.15 for inulin diffusible space. Shocked myocardial slices showed impaired response to cold incubation (0 degrees C, 60 min). After 2 h of in vivo shock, total tissue water, inulin diffusible space, and inulin impermeable space increased significantly (+19.2 +/- 2.4, +8.1 +/- 1.9, +34.4 +/- 6.1%, respectively) for subendocardium, whereas changes in subepicardium parameters were minimal. Shock-induced cellular swelling was accompanied by an increased total tissue sodium, but no change in tissue potassium. Calcium entry blockade in vivo (lidoflazine, 20 micrograms X kg-1 X min-1 during the last 60 min of shock) significantly reduced subendocardial total tissue water as compared with shock-untreated dogs. In addition, calcium entry blockade reduced shock-induced increases in inulin impermeable space and inulin diffusible space. In vitro myocardial slice studies confirm alterations in subendocardial membrane integrity after 2 h of in vivo hemorrhagic shock. Shock-induced abnormalities in myocardial cell volume regulation are reduced by calcium entry blockade in vivo.


1991 ◽  
Vol 260 (1) ◽  
pp. C122-C131 ◽  
Author(s):  
K. Drewnowska ◽  
C. M. Baumgarten

Video microscopy was used to study the regulation of cell volume in isolated rabbit ventricular myocytes. Myocytes rapidly (less than or equal to 2 min) swelled and shrank in hyposmotic and hyperosmotic solutions, respectively, and this initial volume response was maintained without a regulatory volume decrease or increase for 20 min. Relative cell volumes (normalized to isosmotic solution, 1T) were as follows: 1.41 +/- 0.01 in 0.6T, 1.20 +/- 0.04 in 0.8T, 0.71 +/- 0.04 in 1.8T, and 0.57 +/- 0.03 in 2.6T. These volume changes were significantly less than expected if all of the measured volume was osmotically active water. Changes in width and thickness were significantly greater than changes in cell length. The idea that cotransport contributes to cell volume regulation was tested by inhibiting Na(+)-K(+)-2Cl- cotransport with bumetanide (BUM) and Na(+)-Cl- cotransport with chlorothiazide (CTZ). Under isotonic conditions, a 10-min exposure to BUM (1 microM), CTZ (100 microM), or BUM (10 microM) plus CTZ (100 microM) decreased relative cell volume to 0.87 +/- 0.01, 0.86 +/- 0.02, and 0.82 +/- 0.04, respectively. BUM plus CTZ also modified the response to osmotic stress. Swelling in 2.6T medium was 76% greater and shrinkage in 0.6T medium was 29% less than in the absence of diuretics. In contrast to the rapid effects of diuretics, inhibition of the Na(+)-K+ pump with 10 microM ouabain for 20 min did not affect cell volume in 1T solution. Nevertheless, ouabain decreased swelling in 0.6T medium by 52% and increased shrinkage in 1.8T medium by 34%. These data suggest that under isotonic conditions Na(+)-K(+)-2Cl- and Na(+)-Cl- cotransport are critical in establishing cell volume, but osmoregulation can compensate for Na(+)-K+ pump inhibition for at least 20 min. Under anisotonic conditions, the Na(+)-K+ pump and Na(+)-K(+)-2Cl- and/or Na(+)-Cl- cotransport are important in myocyte volume regulation.


Sign in / Sign up

Export Citation Format

Share Document