Effects of arginine vasopressin on cell volume regulation in brain astrocyte in culture

1999 ◽  
Vol 276 (3) ◽  
pp. E596-E601 ◽  
Author(s):  
Darya Sarfaraz ◽  
Cosmo L. Fraser

Astrocytes initially swell when exposed to hypotonic medium but rapidly return to normal volume by the process of regulatory volume decrease (RVD). The role that arginine vasopressin (AVP) plays in hypotonically mediated RVD in astrocytes is unknown. This study was therefore designed to determine whether AVP might play a role in astrocyte RVD. With the use of 3- O-[3H]methyl-d-glucose to determine water space, AVP treatment resulted in significantly increased 3- O-methyl-d-glucose water space within 30 s of hypotonic exposure ( P = 0.0001) and remained significantly elevated above baseline (1.75 μl/mg protein) at 5 min ( P < 0.021). In contrast, in untreated cells, complete RVD was achieved by 5 min. At 30 s, cell volume with AVP treatment was 37% greater than in cells that received no treatment (2.9 vs. 2.26 μl/mg protein, respectively; P < 0.006). The rate of cell volume increase (dV/d t) over 30 s was highly significant (0.038 vs. 0.019 μl ⋅ mg protein−1 ⋅ s−1in the AVP-treated vs. untreated group; P = 0.0004 by regression analysis). Additionally, the rate of cell volume decrease over the next 4.5 min was also significantly greater with vasopressin treatment (−dV/d t = 0.0027 vs. 0.0013 μl ⋅ mg protein−1 ⋅ s−1; P = 0.0306). The effect of AVP was concentration dependent with EC50= 3.5 nM. To determine whether AVP action was receptor mediated, we performed RVD studies in the presence of the V1-receptor antagonists benzamil and ethylisopropryl amiloride and the V2-receptor agonist 1-desamino-8-d-arginine vasopressin (DDAVP). Both V1-receptor antagonists significantly inhibited AVP-mediated volume increase by 40–47% ( P < 0.005), whereas DDAVP had no stimulatory effects above control. Taken together, these data suggest that AVP treatment of brain astrocytes in culture appears to increase 3- O-methyl-d-glucose water space during RVD through V1receptor-mediated mechanisms. The significance of these findings is presently unclear.

2002 ◽  
Vol 283 (1) ◽  
pp. C315-C326 ◽  
Author(s):  
Claire H. Mitchell ◽  
Johannes C. Fleischhauer ◽  
W. Daniel Stamer ◽  
K. Peterson-Yantorno ◽  
Mortimer M. Civan

The volume of certain subpopulations of trabecular meshwork (TM) cells may modify outflow resistance of aqueous humor, thereby altering intraocular pressure. This study examines the contribution that Na+/H+, Cl−/HCO[Formula: see text]exchange, and K+-Cl− efflux mechanisms have on the volume of TM cells. Volume, Cl− currents, and intracellular Ca2+ activity of cultured human TM cells were studied with calcein fluorescence, whole cell patch clamping, and fura 2 fluorescence, respectively. At physiological bicarbonate concentration, the selective Na+/H+ antiport inhibitor dimethylamiloride reduced isotonic cell volume. Hypotonicity triggered a regulatory volume decrease (RVD), which could be inhibited by the Cl− channel blocker 5-nitro-2-(3-phenylpropylamino)-benzoate (NPPB), the K+channel blockers Ba2+ and tetraethylammonium, and the K+-Cl− symport blocker [(dihydroindenyl)oxy]alkanoic acid. The fluid uptake mechanism in isotonic conditions was dependent on bicarbonate; at physiological levels, the Na+/H+ exchange inhibitor dimethylamiloride reduced cell volume, whereas at low levels the Na+-K+-2Cl− symport inhibitor bumetanide had the predominant effect. Patch-clamp measurements showed that hypotonicity activated an outwardly rectifying, NPPB-sensitive Cl− channel displaying the permeability ranking Cl− > methylsulfonate > aspartate. 2,3-Butanedione 2-monoxime antagonized actomyosin activity and both increased baseline [Ca2+] and abolished swelling-activated increase in [Ca2+], but it did not affect RVD. Results indicate that human TM cells display a Ca2+-independent RVD and that volume is regulated by swelling-activated K+ and Cl− channels, Na+/H+ antiports, and possibly K+-Cl− symports in addition to Na+-K+-2Cl− symports.


2018 ◽  
Vol 120 (3) ◽  
pp. 973-984 ◽  
Author(s):  
Vanina Netti ◽  
Alejandro Pizzoni ◽  
Martha Pérez-Domínguez ◽  
Paula Ford ◽  
Herminia Pasantes-Morales ◽  
...  

Neuronal activity in the retina generates osmotic gradients that lead to Müller cell swelling, followed by a regulatory volume decrease (RVD) response, partially due to the isoosmotic efflux of KCl and water. However, our previous studies in a human Müller cell line (MIO-M1) demonstrated that an important fraction of RVD may also involve the efflux of organic solutes. We also showed that RVD depends on the swelling-induced Ca2+ release from intracellular stores. Here we investigate the contribution of taurine (Tau) and glutamate (Glu), the most relevant amino acids in Müller cells, to RVD through the volume-regulated anion channel (VRAC), as well as their Ca2+ dependency in MIO-M1 cells. Swelling-induced [3H]Tau/[3H]Glu release was assessed by radiotracer assays and cell volume by fluorescence videomicroscopy. Results showed that cells exhibited an osmosensitive efflux of [3H]Tau and [3H]Glu (Tau > Glu) blunted by VRAC inhibitors 4-(2-butyl-6,7-dichloro-2-cyclopentylindan-1-on-5-yl)-oxybutyric acid and carbenoxolone reducing RVD. Only [3H]Tau efflux was mainly dependent on Ca2+ release from intracellular stores. RVD was unaffected in a Ca2+-free medium, probably due to Ca2+-independent Tau and Glu release, but was reduced by chelating intracellular Ca2+. The inhibition of phosphatidylinositol-3-kinase reduced [3H]Glu efflux but also the Ca2+-insensitive [3H]Tau fraction and decreased RVD, providing evidence of the relevance of this Ca2+-independent pathway. We propose that VRAC-mediated Tau and Glu release has a relevant role in RVD in Müller cells. The observed disparities in Ca2+ influence on amino acid release suggest the presence of VRAC isoforms that may differ in substrate selectivity and regulatory mechanisms, with important implications for retinal physiology. NEW & NOTEWORTHY The mechanisms for cell volume regulation in retinal Müller cells are still unknown. We show that swelling-induced taurine and glutamate release mediated by the volume-regulated anion channel (VRAC) largely contributes the to the regulatory volume decrease response in a human Müller cell line. Interestingly, the hypotonic-induced efflux of these amino acids exhibits disparities in Ca2+-dependent and -independent regulatory mechanisms, which strongly suggests that Müller cells may express different VRAC heteromers formed by the recently discovered leucine-rich repeat containing 8 (LRRC8) proteins.


1991 ◽  
Vol 260 (1) ◽  
pp. C122-C131 ◽  
Author(s):  
K. Drewnowska ◽  
C. M. Baumgarten

Video microscopy was used to study the regulation of cell volume in isolated rabbit ventricular myocytes. Myocytes rapidly (less than or equal to 2 min) swelled and shrank in hyposmotic and hyperosmotic solutions, respectively, and this initial volume response was maintained without a regulatory volume decrease or increase for 20 min. Relative cell volumes (normalized to isosmotic solution, 1T) were as follows: 1.41 +/- 0.01 in 0.6T, 1.20 +/- 0.04 in 0.8T, 0.71 +/- 0.04 in 1.8T, and 0.57 +/- 0.03 in 2.6T. These volume changes were significantly less than expected if all of the measured volume was osmotically active water. Changes in width and thickness were significantly greater than changes in cell length. The idea that cotransport contributes to cell volume regulation was tested by inhibiting Na(+)-K(+)-2Cl- cotransport with bumetanide (BUM) and Na(+)-Cl- cotransport with chlorothiazide (CTZ). Under isotonic conditions, a 10-min exposure to BUM (1 microM), CTZ (100 microM), or BUM (10 microM) plus CTZ (100 microM) decreased relative cell volume to 0.87 +/- 0.01, 0.86 +/- 0.02, and 0.82 +/- 0.04, respectively. BUM plus CTZ also modified the response to osmotic stress. Swelling in 2.6T medium was 76% greater and shrinkage in 0.6T medium was 29% less than in the absence of diuretics. In contrast to the rapid effects of diuretics, inhibition of the Na(+)-K+ pump with 10 microM ouabain for 20 min did not affect cell volume in 1T solution. Nevertheless, ouabain decreased swelling in 0.6T medium by 52% and increased shrinkage in 1.8T medium by 34%. These data suggest that under isotonic conditions Na(+)-K(+)-2Cl- and Na(+)-Cl- cotransport are critical in establishing cell volume, but osmoregulation can compensate for Na(+)-K+ pump inhibition for at least 20 min. Under anisotonic conditions, the Na(+)-K+ pump and Na(+)-K(+)-2Cl- and/or Na(+)-Cl- cotransport are important in myocyte volume regulation.


1997 ◽  
Vol 273 (2) ◽  
pp. C360-C370 ◽  
Author(s):  
J. C. Summers ◽  
L. Trais ◽  
R. Lajvardi ◽  
D. Hergan ◽  
R. Buechler ◽  
...  

To gain insight into the mechanism(s) by which cells sense volume changes, specific predictions of the macromolecular crowding theory (A. P. Minton. In: Cellular and Molecular Physiology of Cell Volume Regulation, edited by K. Strange. Boca Raton, FL: CRC, 1994, p. 181-190. A. P. Minton, C. C. Colclasure, and J. C. Parker. Proc. Natl. Acad. Sci. USA 89: 10504-10506, 1992) were tested on the volume of internally perfused barnacle muscle cells. This preparation was chosen because it allows assessment of the effect on cell volume of changes in the intracellular macromolecular concentration and size while maintaining constant the ionic strength, membrane stretch, and osmolality. The predictions tested were that isotonic replacement of large macromolecules by smaller ones should induce volume decreases proportional to the initial macromolecular concentration and size as well as to the magnitude of the concentration reduction. The experimental results were consistent with these predictions: isotonic replacement of proteins or polymers with sucrose induced volume reductions, but this effect was only observed when the replacement was > or = 25% and the particular macromolecule had an average molecular mass of < or = 20 kDa and a concentration of at least 18 mg/ml. Volume reduction was effected by a mechanism identical with that of hypotonicity-induced regulatory volume decrease, namely, activation of verapamil-sensitive Ca2+ channels.


2003 ◽  
Vol 284 (5) ◽  
pp. C1280-C1289 ◽  
Author(s):  
A. P. Seale ◽  
N. H. Richman ◽  
T. Hirano ◽  
I. Cooke ◽  
E. G. Grau

In the tilapia ( Oreochromis mossambicus), as in many euryhaline teleost fish, prolactin (PRL) plays a central role in freshwater adaptation, acting on osmoregulatory surfaces to reduce ion and water permeability and increase solute retention. Consistent with these actions, PRL release is stimulated as extracellular osmolality is reduced both in vivo and in vitro. In the current experiments, a perfusion system utilizing dispersed PRL cells was developed for permitting the simultaneous measurement of cell volume and PRL release. Intracellular Ca2+ was monitored using fura 2-loaded cells under the same conditions. When PRL cells were exposed to hyposmotic medium, an increase in PRL cell volume preceded the increase in PRL release. Cell volume increased in proportion to decreases of 15 and 30% in osmolality. However, regulatory volume decrease was clearly seen only after a 30% reduction. The hyposmotically induced PRL release was sharply reduced in Ca2+-deleted hyposmotic medium, although cell volume changes were identical to those observed in normal hyposmotic medium. In most cells, a rise in intracellular Ca2+ concentration ([Ca2+]i) during hyposmotic stimulation was dependent on the availability of extracellular Ca2+, although small transient increases in [Ca2+]i were sometimes observed upon introduction of Ca2+-deleted media of the same or reduced osmolality. These results indicate that an increase in cell size is a critical step in the transduction of an osmotic signal into PRL release and that the hyposmotically induced increase in PRL release is greatly dependent on extracellular Ca2+.


1990 ◽  
Vol 258 (3) ◽  
pp. F690-F696
Author(s):  
M. Suzuki ◽  
K. Kawahara ◽  
A. Ogawa ◽  
T. Morita ◽  
Y. Kawaguchi ◽  
...  

Although animal cells swell in hypotonic medium, their volume is subsequently regulated by a net loss of KCl via Ca2(+)-dependent channels. A rise in intracellular free calcium ([Ca2+]i) thus appears to be an initial event in the adaptation of external tonicity, although details of this mechanism are not known. To investigate cell volume regulation, we measured [Ca2+]i (by use of fura-2) and cell diameters in single cells of cultured renal proximal convoluted tubule. We found that a rapid rise in [Ca2+]i occurred after cells were exposed to hypotonic solution (250 mosM) from 95.8 +/- 3.8 to 468.2 +/- 24 nM (n = 16). The rise in [Ca2+]i was not observed in cells exposed to Ca2(+)-free medium, and exposure to isotonic high-K or low-Na medium did not elicit a rise in [Ca2+]i, suggesting that this rise was a result of Ca2+ influx and not via voltage-dependent Ca2+ influx or decrease of Ca2+ efflux via Na(+)-Ca2+ pump. Pretreatment of cells with pertussis toxin dose dependently blocked the rise in [Ca2+]i. The hypotonic solution enhanced accumulations of inositol tris- and tetra-phosphate after a 1-min exposure. Studies that measured cell diameters suggest that recovery of cell volume may include the rise in [Ca2+]i. These data suggest that the regulatory volume decrease of proximal tubule cells involves a pertussis toxin-sensitive guanine nucleotide binding protein-operated Ca2+ influx.


1995 ◽  
Vol 268 (4) ◽  
pp. C894-C902 ◽  
Author(s):  
C. C. Armsby ◽  
C. Brugnara ◽  
S. L. Alper

We investigated cation transport and cell volume regulation in erythrocytes of CD1 and C57/B6 mice. Swelling of cells from either strain stimulated K+ efflux that was insensitive to ouabain, bumetanide, and clotrimazole. Seventy-five percent of swelling-induced K+ efflux was Cl- dependent (inhibited by sulfamate or methanesulfonate, partially by NO3-, but not by SCN-) and was inhibited by okadaic acid (OA; 50% inhibitory concentration = 18 +/- 6 nM in CD1 and 10 +/- 4 nM in C57/B6). In both strains, K+ efflux into isotonic medium was stimulated by staurosporine or by N-ethylmaleimide, and the latter was partially blocked by pretreatment of cells with OA. When cells of either strain were incubated in hypotonic medium or preswollen isosmotically with nystatin, OA-sensitive regulatory volume decrease (RVD) and K+ loss were observed. RVD produced by hypotonic swelling was prevented by Cl- replacement with sulfamate or methanesulfonate. These properties suggest the presence in outbred and inbred mouse erythrocytes of RVD mediated by K(+)-Cl- cotransport.


2021 ◽  
Vol 55 (S1) ◽  
pp. 57-70

In order to cope with external stressors such as changes in humidity and temperature or irritating substances, the epidermis as the outermost skin layer forms a continuously renewing and ideally intact protective barrier. Under certain circumstances, this barrier can be impaired and epidermal cells have to counteract cell swelling or shrinkage induced by osmotic stress via regulatory volume decrease (RVD) or increase (RVI). Here, we will review the current knowledge regarding the molecular machinery underlying RVD and RVI in the epidermis. Furthermore, we will discuss the current understanding how cell volume changes and its regulators are associated with epidermal renewal and barrier formation.


1997 ◽  
Vol 272 (6) ◽  
pp. C1854-C1861 ◽  
Author(s):  
D. G. Seguin ◽  
J. M. Baltz

Mouse zygotes regulate their volumes after cell swelling. This regulatory volume decrease (RVD) is rapid and complete. RVD in zygotes was inhibited by K+ or Cl- channel blockers, indicating the participation of such channels in volume recovery. The channels are separate entities, as indicated by the ability of the cation ionophore gramicidin to restore RVD when K+ channels are blocked but not when Cl- channels are blocked. Intracellular Ca2+ concentration increased with cell swelling. Nevertheless, RVD occurred normally in zygotes loaded with the Ca2+ chelator, 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid, which prevented Ca2+ from increasing above its normal resting concentration. Thus an increase in intracellular Ca2+ is not necessary for zygote RVD; consistent with this, inhibitors of Ca(2+)-activated K+ channels had little or no effect on RVD. RVD in zygotes was also completely inhibited by millimolar amounts of extracellular ATP. ATP has been shown to inhibit current passed by the volume-sensitive organic osmolyte-Cl- channel in other cells, and thus zygotes may have such a channel participating in RVD.


1989 ◽  
Vol 256 (4) ◽  
pp. C858-C864 ◽  
Author(s):  
W. C. O'Neill

Swelling of human red cells activates a putative K-Cl cotransport that is not present at normal cell volume and that disappears after several hours. To determine whether regulatory volume decrease (RVD) is occurring in human erythrocytes and is responsible for the inactivation of K-Cl cotransport, the relationship between cell volume and the inactivation and reactivation of volume-sensitive (VS) K-Cl cotransport was studied. VS K influx into high K cells was transient, whereas influx into low K cells (prepared with nystatin), which are unable to shrink via K efflux, remained fully activated. Likewise, VS K efflux into hypotonic medium disappeared after 100 min in a low K medium but remained activated in a high K medium that prevented cell shrinkage. Cells that had been preincubated in hypotonic medium to inactivate VS K-Cl cotransport showed no significant recovery of VS cotransport after a 6-h incubation in isotonic medium but showed full restoration of VS cotransport after treatment with nystatin in isotonic medium to reequilibrate cell water. A pure fraction of volume-regulating (VR) cells was subsequently isolated by preincubating red cells in hypotonic medium and then subjecting them to further hypotonicity to lyse all non-VR cells. The 2.5% of cells that remained consisted of 16% reticulocytes and exhibited a Cl-dependent RVD in hypotonic medium. VS K-Cl cotransport was enriched 10-fold and Na-K-Cl cotransport was enriched 12-fold in these cells, whereas the enrichment of N-ethylmaleimide (NEM)-activated K-Cl cotransport was only threefold.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document