Primary culture of duck salt gland. I. Morphology of confluent cell layers

1985 ◽  
Vol 249 (1) ◽  
pp. C32-C40 ◽  
Author(s):  
R. J. Lowy ◽  
J. H. Schreiber ◽  
D. C. Dawson ◽  
S. A. Ernst

Dissociated avian salt gland secretory cells were maintained in primary culture after plating on hydrated collagen gels. When seeded at 3 X 10(6) cells/cm2, confluent cell sheets formed within 2-3 days, whereas cultures seeded at lower densities formed a complex reticulum of cell aggregates, which remained nonconfluent even after 7 days. Scanning electron microscopy showed that the free surface of 3-day confluent cultures consisted of intermixed convex and flattened cell membranes with prominent junctional boundaries and abundant microvilli. Transmission electron microscopy indicated that these cultures were multilayers of 1-4 cells in thickness. The plasma membranes of the superficial cells were polarized into apical and basolateral regions displaying, respectively, microvilli and interdigitating lateral membrane folds. These membrane domains were separated by shallow occluding junctions, which consisted of both single strands and simple net-like arrays in freeze-fracture images. Underlying epithelial cells retained lateral membrane folds and formed desmosomal contacts with superficial and neighboring cells. These cultures, unlike the intact tissue, allow direct access to the apical and basolateral cell surfaces for electrophysiological analysis of transmural active ion transport.

1972 ◽  
Vol 11 (3) ◽  
pp. 855-873
Author(s):  
A. M. LEVINE ◽  
JOAN A. HIGGINS ◽  
R. J. BARRNETT

In response to salt water stress there is a marked increase in the plasma membranes of the epithelial secretory cells of the salt glands of domestic ducklings. In the present study, the fine-structural localization of the acyltransferases involved in synthesis of phospholipids has been investigated in this tissue during this increased biogenesis of plasma membranes. The specific activity of the acyltransferases of the salt gland rose in response to salt stress, and this preceded the rapid increase in weight and cellular differentiation. After the weight increase of the gland became established, the specific activity of the acyltransferases declined, but the total activity remained constant. Salt gland tissue fixed in a mixture of glutaraldehyde and formaldehyde retained 35% of the acyltransferase activity of unfixed tissue. Cytochemical studies of the localization of acyltransferase activity in fixed and unfixed salt gland showed reaction product associated only with the lamellar membranes of the Golgi complex. This localization occurred in partially differentiated cells from salt-stressed glands to the greatest extent; and to only a small extent in cells of control tissue from unstressed salt glands. Omission of substrates resulted in absence of reaction product in association with the Golgi membranes. In addition, vesicles having limiting membranes morphologically similar to the plasma membrane occurred between the Golgi region and the plasma membrane in the partially differentiated cells. The phospholipid component of the plasma membrane appears therefore to be synthesized in association with the Golgi membranes and the membrane packaged at this site from which it moves in the form of vesicles to fuse with the pre-existing plasma membrane.


1980 ◽  
Vol 84 (2) ◽  
pp. 438-453 ◽  
Author(s):  
Y Tanaka ◽  
P De Camilli ◽  
J Meldolesi

Three types of membrane interactions were studied in three exocrine systems (the acinar cells of the rat parotid, rat lacrimal gland, and guinea pig pancrease) by freeze- fracture and thin-section electron microscopy: exocytosis, induced in vivo by specific pharmacological stimulations; the mutual apposition of secretory granule membranes in the intact cell; membrane appositions induced in vitro by centrifugation of the isolated granules. In all three glandular cells, the distribution of intramembrane particles (IMP) on the fracture faces of the luminal plasmagranule membrane particles (IMP) on the fracture faces of the lumenal plasmalemma appeared random before stimulation. However, after injection of secretagogues, IMP were rapidly clearly from the areas of granule- plasmalemma apposition in the parotid cells and, especially, in lacrimocytes. In the latter, the cleared areas appeared as large bulges toward the lumen, whereas in the parotid they were less pronounced. Exocytotic openings were usually large and the fracture faces of their rims were covered with IMP. In contrast, in stimulated pancreatic acinar cells, the IMP distribution remained apparently random after stimulation. Exocytoses were established through the formation of narrown necks, and no images which might correspond to early stages of membrane fusion were revealed. Within the cytoplasm of parotid and lacrimal cells (but not in the pancreas), both at rest and after stimulation, secretion granules were often closely apposed by means of flat, circular areas, also devoid of IMP. In thin sections, the images corresponding to IMP-free areas were close granule-granule and granule-plasmalemma appositions, sometimes with focal merging of the membrane outer layers to yield pentalaminar structures. Isolated secretion granules were forced together in vitro by centrifugation. Under these conditions, increasing the centrifugal force from 1,600 to 50,000 g for 10 min resulted in a progressive, statistically significant increase of the frequency of IMP-free flat appositions between parotid granules. In contrast, no such areas were seen between freeze-fractured pancreatic granules, although some focal pentalaminar appositions appeared in section after centrifugation at 50 and 100,000 g for 10 min. On the basis of the observation that, in secretory cells, IMP clearing always develops in deformed membrane areas (bulges, depressions, flat areas), it is suggested that it might result from the forced mechanical apposition of the interacting membranes. This might be a preliminary process not sufficient to initiate fusion. In the pancreas, IMP clearing could occur over surface areas too small to be detected. In stimulated parotid and lacrimal glands they were exceptional. These structures were either attached at the sites of continuity between granule and plasma membranes, or free in the acinar lumen, with a preferential location within exocytotic pockets or in their proximity. Experiments designed to investigate the nature of these blisters and vesicles revealed that they probably arise artifactually during glutaraldehyde fixation. In fact, (a) they were large and numerous in poorly fixed samples but were never observed in thin sections of specimens fixed in one step with glutaraldehyde and OsO(4); and (b) no increase in concentration of phospholipids was observed in the parotid saliva and pancreatic juice after stimulation of protein discharge, as was to be expected if release of membrane material were occurring after exocytosis.


Author(s):  
Ian G. Thompson

With the advent of new techniques for isolating single cells for biochemical and physiological investigation, an important consideration is the morphological integrity of these cells after dissociation from the intact tissue. Do isolated cells retain the degree of structural differentiation that is apparent in vivo? The principal secretory cells of the avian salt gland are an example of cells that are highly differentiated in form under conditions of physiological stress. This report describes the ultrastructure of dissociated salt gland cells as visualized with the scanning and transmission electron microscope.The dissociation procedure employed here was the same as that applied to the exocrine pancreas. For transmission electron microscopy the cell suspension was centrifuged and the resultant pellet prefixed in cacodylate buffered 3% glutaraldehyde- 1% paraformaldehyde, postfixed in unbuffered 1% osmium tetroxide, and embedded in epon-araldite. An assessment of the cell surface coat following enzymatic dissociation was facilitated by the inclusion of ruthenium red (500 ppm) in both the aldehyde and osmium fixation steps.


1987 ◽  
Vol 35 (5) ◽  
pp. 601-611 ◽  
Author(s):  
T Kobayashi ◽  
T Okada ◽  
H Seguchi

We have developed a new cytochemical method for detecting the ouabain-sensitive, potassium-dependent p-nitrophenylphosphatase (K-NPPase) activity of the sodium-potassium-activated adenosine triphosphatase (Na-K ATPase) complex. The incubation medium contains p-nitrophenylphosphate (p-NPP) as substrate, cerium chloride as capture agent, Tricine buffer, MgCl2, and KCl. Tricine buffer protected against the medium turbidity caused by non-enzymatic reaction at pH 7.5. Biochemically, the accumulation of p-nitrophenol and phosphate in the reaction precipitate was proportionally related to the enzyme concentration. Ultracytochemically, the reaction products of the K-NPPase activity were localized as fine and uniform electron-dense deposits in the cytoplasmic side of specialized basolateral plasma membranes of cells of kidney distal convoluted tubules, secretory cells of salt gland, and marginal cells of stria vascularis. This method has the advantage of being useful at physiological pH.


Author(s):  
T. Antakly ◽  
F. Zeytinoglu ◽  
G. Pelletier ◽  
F. Labrie

So far, there has been no report concerning the surface morphology of cultured secretory cells in different states of activity, as observed by scanning electron microscopy. The anterior pituitary cells in monolayer culture offer an unique system to study the modifications of cell conformation in relation with changes of activity since these cells can be specifically modulated by stimulating or inhibiting factors. Scanning electron microscopy of anterior pituitary cells in primary culture was thus performed in different states of secretory activity. Adult female Sprague-Dawley rats at random stage of the estrous cycle, were used for the preparation of the primary cultures of anterior pituitary cells as previously described (Endocrinology 98: 1528, 1976). The cells 7. 5 x 105 in 1. 5 ml of Dulbecco's modified Eagle's medium containing 10% horse serum and 0. 25% foetal calf serum were plated in 3. 5 x 10 mm Petri dishes and were used six days after plating.


1985 ◽  
Vol 100 (2) ◽  
pp. 648-651 ◽  
Author(s):  
R E Gordon

Orthogonal arrays are found on plasma membranes of glial cells, in the central nervous system, on muscle plasma membranes at neuromuscular junctions, and on a variety of epithelial cells. These structures have been correlated with ion flux. With the aid of freeze fracture technique, orthogonal particle arrays were found on plasma membranes on airway epithelial cells of rats and hamsters. They have been found in abundance at the base of secretory cells throughout normal airway epithelium. These structures were found to increase in number during regeneration in response to injury and they were found in great numbers on plasma membranes of all airway cells in response to acute and chronic NO2 exposure. The lateral and basal plasma membranes of the respiratory epithelium are a new source for studying orthogonal arrays. The normal number and distribution of these arrays can be perturbed in response to mechanical and chemical injury.


1972 ◽  
Vol 20 (1) ◽  
pp. 23-38 ◽  
Author(s):  
STEPHEN A. ERNST

A cytochemical procedure is described for the ultrastructural localization of K-dependent, ouabain-sensitive nitrophenyl phosphatase activity in avian salt gland. Cryostat sections (50 µ) of paraformaldehyde-fixed tissue were incubated in a kinetically defined medium containing: 5 mM p-nitrophenyl phosphate, 10 mM MgCl2, 10 mM KCl, 100 mM Tris-HCl buffer (pH 8.5 or 9.0) and 20 mM SrCl2 to precipitate hydrolyzed phosphate. After incubation at room temperature, the sections were treated with Pb(NO3)2 to convert SrPi to PbPi precipitates for visualization in the electron microscope. Reaction product was localized on the cytoplasmic side of the secretory cell lateral and basal plasma membranes. Little, if any, reaction product was associated with the apical surfaces of the secretory cells or with endothelial surfaces of capillaries. Appropriate control experiments indicated that deposition of reaction product was dependent on Mg and K and was sensitive to ouabain. Furthermore, nonenzymatic hydrolysis of nitrophenyl phosphate did not occur in the medium, and deposition of artifactually produced precipitates did not resemble deposition of enzymatically produced precipitates. The relationship of this localization to transport adenosine triphosphatase cytochemistry is discussed, and the physiologic implications of the localization for tracing the route of active Na transport in the salt gland are considered.


Author(s):  
Thomas S. Leeson ◽  
C. Roland Leeson

Numerous previous studies of outer segments of retinal receptors have demonstrated a complex internal structure of a series of transversely orientated membranous lamellae, discs, or saccules. In cones, these lamellae probably are invaginations of the covering plasma membrane. In rods, however, they appear to be isolated and separate discs although some authors report interconnections and some continuities with the surface near the base of the outer segment, i.e. toward the inner segment. In some species, variations have been reported, such as longitudinally orientated lamellae and lamellar whorls. In cross section, the discs or saccules show one or more incisures. The saccules probably contain photolabile pigment, with resulting potentials after dipole formation during bleaching of pigment. Continuity between the lamina of rod saccules and extracellular space may be necessary for the detection of dipoles, although such continuity usually is not found by electron microscopy. Particles on the membranes have been found by low angle X-ray diffraction, by low temperature electron microscopy and by freeze-etching techniques.


Sign in / Sign up

Export Citation Format

Share Document