The "coat" of kidney intercalated cell tubulovesicles does not contain clathrin

1986 ◽  
Vol 250 (4) ◽  
pp. C605-C608 ◽  
Author(s):  
D. Brown ◽  
L. Orci

Intercalated cells of kidney collecting ducts contain a population of tubulovesicles in their apical cytoplasm, whose limiting membranes are decorated by arrays of dense, club-shaped projections oriented toward the cytoplasm. These tubulovesicles have been implicated in endo-exocytotic events in these cells. To determine a possible relationship between this “coating” material and clathrin, the coat protein associated with endocytotic coated pits and coated vesicles in other cell types, we applied a monospecific, affinity-purified anti-clathrin antibody to thin sections of rat kidney embedded at low temperature in Lowicryl K4M. We found that no specific labeling was associated with the studlike material of intercalated cell tubulovesicles.

1985 ◽  
Vol 248 (3) ◽  
pp. C348-C356 ◽  
Author(s):  
D. Brown ◽  
J. Roth ◽  
L. Orci

The lectin-gold technique was used to detect Helix pomatia and Dolichos biflorus lectin binding sites directly on semithin and thin sections of rat kidney collecting ducts. Intercalated cell apical plasma membranes and the membranes of apical cytoplasmic vesicles were heavily labeled in the cortex and outer stripe of the outer medulla but were negative or very weakly labeled in the inner stripe and inner medulla. In contrast, clear cell apical membranes were labeled along the entire length of the collecting duct. Double labeling of semithin cryostat sections with a specific antibody and lectin-gold complexes was used to demonstrate that the intercalated cells in all regions studied contained carbonic anhydrase, even though the lectin binding differed. These results indicate that, in terms of their glycocalyx composition, intercalated cells represent a heterogeneous population in different regions of the collecting duct.


2003 ◽  
Vol 51 (1) ◽  
pp. 69-79 ◽  
Author(s):  
Marco Piludu ◽  
Sean A. Rayment ◽  
Bing Liu ◽  
Gwynneth D. Offner ◽  
Frank G. Oppenheim ◽  
...  

The human salivary mucins MG1 and MG2 are well characterized biochemically and functionally. However, there is disagreement regarding their cellular and glandular sources. The aim of this study was to define the localization and distribution of these two mucins in human salivary glands using a postembedding immunogold labeling method. Normal salivary glands obtained at surgery were fixed in 3% paraformaldehyde-0.1% glutaraldehyde and embedded in Lowicryl K4M or LR Gold resin. Thin sections were labeled with rabbit antibodies to MG1 or to an N-terminal synthetic peptide of MG2, followed by gold-labeled goat anti-rabbit IgG. The granules of all mucous cells of the submandibular and sublingual glands were intensely reactive with anti-MG1. No reaction was detected in serous cells. With anti-MG2, the granules of both mucous and serous cells showed reactivity. The labeling was variable in both cell types, with mucous cells exhibiting a stronger reaction in some glands and serous cells in others. In serous granules, the electron-lucent regions were more reactive than the dense cores. Intercalated duct cells near the acini displayed both MG1 and MG2 reactivity in their apical granules. In addition, the basal and lateral membranes of intercalated duct cells were labeled with anti-MG2. These results confirm those of earlier studies on MG1 localization in mucous cells and suggest that MG2 is produced by both mucous and serous cells. They also indicate differences in protein expression patterns among salivary serous cells.


1988 ◽  
Vol 255 (5) ◽  
pp. C612-C621 ◽  
Author(s):  
K. Strange

Cells of the rabbit renal cortical collecting tubule possess significant regulatory volume decrease (RVD) capabilities. After a 100-mosmol/kg reduction in peritubular osmolality, principal and intercalated cells swell 40-45 and 30-35%, respectively, and immediately activate RVD mechanisms. Both cell types downregulate their volume to within 5-6% of control volume at initial rates of 3-6%/min. Return to isotonic saline causes both cell types to shrink (isotonic shrinkage) 25-35% below control volume due to the loss of osmotically active intracellular solutes during RVD. In most mammalian cells studied to date, RVD is mediated largely by passive KCl efflux via KCl cotransport, parallel K+ and Cl- channels, or parallel K+-H+ and Cl- -HCO3- exchange mechanisms. Peritubular application of 0.1 mM ouabain (0 Na+ lumen), bilateral CO2-HCO3- removal, or bilateral application of 0.02 mM bumetanide, 2.0 mM Ba2+, 2.0 mM anthracene-9-carboxylic acid, or 0.5 mM SITS had no significant effect on rates or magnitudes of RVD and isotonic shrinkage in either cell type. Bilateral elevation of K+ from 5 to 52.5 mM reverses or reduces the electrochemical gradient for K+ movement, causing accumulation of this ion in the cytoplasm, but had no effect on the rates or magnitude of principal and intercalated cell RVD. Principal and intercalated cells from K+- or Cl- -depleted tubules (1 h bilateral perfusion with K+- or Cl- -free saline at 37 degrees C) showed normal rates and magnitudes of RVD in K+- or Cl- -free hypotonic saline. Taken together, these results argue against a significant role of passive KCl efflux pathways in mediating principal and intercalated cell RVD.


1987 ◽  
Vol 253 (2) ◽  
pp. C323-C328 ◽  
Author(s):  
H. Holthofer ◽  
B. A. Schulte ◽  
G. Pasternack ◽  
G. J. Siegel ◽  
S. S. Spicer

The morphologically heterogeneous cell populations in the collecting ducts of the rat kidney were studied using immunocytochemical detection of Na+-K+-ATPase and the anion channel (band 3) glycoprotein. Both enzymes were localized to the basal aspect of separate and morphologically distinct subpopulations of cells in various segments of the collecting duct. Na+-K+-ATPase appeared to be present exclusively in principal cells as identified by their morphology, whereas band 3 antibodies reacted only with intercalated cells. However, 5-20% of cells with the morphological characteristics of intercalated cells failed to react with either antisera in various segments of collecting ducts. As band 3 glycoprotein serves in exchanging intracellular bicarbonate for chloride, it is highly likely that the cells positive for this antigen secrete protons. The method introduced here appears thus useful for distinguishing between principal and intercalated cells by differences in their enzyme content and further for revealing two subpopulations of intercalated cells. This method promises to provide a useful approach for studying the principal and intercalated cell populations in various metabolic states.


2019 ◽  
Author(s):  
Malini Mukherjee ◽  
Jennifer DeRiso ◽  
Madhusudhana Janga ◽  
Eric Fogarty ◽  
Kameswaran Surendran

AbstractThe distal nephron and collecting duct segments of the mammalian kidney consist of intercalated cell types intermingled among principal cell types. Notch signaling ensures that a sufficient number of cells select a principal instead of an intercalated cell fate. However, the precise mechanisms by which Notch signaling patterns the distal nephron and collecting duct cell fates is unknown. Here we observed that Hes1, a direct target of Notch signaling pathway, is required within the mouse developing collecting ducts for repression of Foxi1 expression, an essential intercalated cell specific transcription factor. Interestingly, inactivation of Foxi1 in Hes1-deficient collecting ducts rescues the deficiency in principal cell fate selection, overall urine concentrating deficiency, and reduces the occurrence of hydronephrosis. However, Foxi1 inactivation does not rescue the reduction in expression of all principal cell genes in the Hes1-deficient kidney collecting duct cells that select the principal cell fate. Additionally, suppression of Notch/Hes1 signaling in mature principal cells reduces principal cell gene expression without activating Foxi1. We conclude that Hes1 is a Notch signaling target that is essential for normal patterning of the collecting ducts with intermingled cell types by repressing Foxi1, and for maintenance of principal cell gene expression independent of repressing Foxi1.


1987 ◽  
Vol 253 (4) ◽  
pp. F622-F635 ◽  
Author(s):  
L. M. Satlin ◽  
G. J. Schwartz

Intercalated cells play a major role in renal regulation of acid-base balance. We used fluorescent dyes to characterize postnatal maturation of intercalated cells. We stained rabbit collecting ducts with the pH-sensitive dye 6-carboxyfluorescein diacetate and identified individual intercalated cells by their bright green fluorescence. Number of fluorescent cells per millimeter tubule doubled during maturation in midcortex (68 +/- 7 to 121 +/- 9; P less than 0.01) but did not change in outer stripe of outer medulla. Excitation-ratio (490/450 nm) fluorometry of individual cells in nonperfused tubules revealed an increase in pH of cortical intercalated cell from 7.28 +/- 0.03 in newborn to 7.43 +/- 0.03 in adult (P less than 0.005); principal cell pH did not change with age, averaging 7.10 +/- 0.05. The smaller difference in pH between intercalated and principal cells in neonates suggested a paucity of H+ pumps in immature intercalated cells. Indeed, few cortical intercalated cells trapped the weak base acridine orange in cytoplasmic vesicles that contained H+ pumps or demonstrated selective uptake of 3,3'+-dipentyloxacarbocyanine, a fluorescent cation that probes for mitochondrial potential. Intercalated cells in neonatal medullary collecting ducts had a cell pH similar to that measured in the adult, as well as numerous acidic cytoplasmic vesicles and significant mitochondrial potentials. In conclusion, intercalated cells in cortical collecting duct underwent postnatal proliferation and maturation, whereas those cells present in outer medullary collecting duct, where proliferation was virtually complete by 1 wk of age, were nearly differentiated. Signals directing this centrifugal pattern of postnatal renal maturation are presently unknown.


Author(s):  
Keith R. Porter ◽  
Karen L. Anderson

We have shown that a small population of normal cells can be cultured from the scales of the squirrel fish, Holocentrus rufus. They can be grown directly on Formvar-carbon-coated gold grids and, while still on the grids they can be fixed, stained and dehydrated for high voltage electron microscopy. One of the cell types (epidermal) spreads out on the carbon-coated surface and is thin enough in most parts for conventional (100kV) electron microscopy. The aspect of wholeness represented in these qells should not be overlooked for it provides information that might be missed in a series of thin sections where the sample is obviously smaller. Furthermore, if experimental studies are contemplated, they can be made while the cells are still alive and available for light microscopy.


1996 ◽  
Vol 271 (6) ◽  
pp. F1217-F1223 ◽  
Author(s):  
E. Siga ◽  
P. Houillier ◽  
B. Mandon ◽  
G. Moine ◽  
C. de Rouffignac

Calcitonin (CT) modulates rat intercalated cell (IC) functions of the rat cortical collecting duct (CCD) [E. Siga, B. Mandon, N. Roinel, and C. de Rouffignac. Am.J. Physiol. 264 (Renal Fluid Electrolyte Physiol. 33): F221-F227, 1993]. To characterize the specific function regulated by CT, rat CCDs were perfused in vitro. Total CO2 net fluxes (JtCO2, pmol.mm-1.min-1) and transepithelial voltage (Vt) were measured. Bath CT induced a significant tCO2 reabsorption. This effect was higher on CCDs harvested from acid-loaded than from control rats. When HCO3- secretion was blocked, CT also raised JtCO2 and Vt. When H+ secretion was blocked, CT was ineffective on JtCO2 and Vt. When HCO3- secretion was increased and H+ secretion was inhibited, CT did not change JtCO2, whereas isoproterenol (ISO) increased tCO2 secretion from -13.5 +/- 2.0 (control) to -19.0 +/- 2.4 (ISO). In rat CCD studied under these same preceding conditions plus luminal amiloride to block the Na(+)-dependent Vt, CT did not alter Vt, whereas ISO increased it by 4.5 +/- 0.7 mV. We conclude from these data that, in the rat CCD, calcitonin stimulates H+ secretion, likely by so-called alpha-intercalated (alpha-IC) cells, whereas ISO stimulates HCO3- secretion, likely by so-called beta-IC cells.


Physiology ◽  
2011 ◽  
Vol 26 (4) ◽  
pp. 266-272 ◽  
Author(s):  
Qais Al-Awqati ◽  
Xaio Bo Gao

The intercalated cell of collecting ducts of the kidney is of two forms, the α form secretes acid, whereas the β form secretes HCO3. Here, we review recent work that shows that the α form is derived from the β form and that the pathway is mediated by an extracellular matrix protein called hensin/DMBT1.


2001 ◽  
Vol 281 (6) ◽  
pp. F1047-F1057 ◽  
Author(s):  
Marie-Louise Elkjær ◽  
Lene N. Nejsum ◽  
Veronika Gresz ◽  
Tae-Hwan Kwon ◽  
Uffe B. Jensen ◽  
...  

First published August 8, 2001; 10.1152/ajprenal.00158.2001.—The purpose of this study was to determine the cellular and subcellular localization of aquaporin-8 (AQP8) in rat kidney and other organs by RT-PCR analyses and by immunoblotting and immunohistochemistry using peptide-derived rabbit antibodies to rat AQP8. RT-PCR and Southern blotting revealed the presence of AQP8 mRNA in all kidney zones. LLC-PK1 cells transfected with a rat AQP8 construct exhibited strong labeling with the affinity-purified antibodies, whereas controls using cells transfected with the vector, but without the insert, were negative. The labeling was almost exclusively associated with intracellular vesicles. Immunoblotting of kidney membrane fractions revealed a predominant single band of 26–28 kDa. AQP8 immunoreactivity was mainly present in the cortex and outer stripe of the outer medulla. Sequential ultracentrifugation of rat kidney membrane revealed that AQP8 resides predominantly in intracellular vesicular fractions. Immunocytochemistry revealed modest labeling of proximal tubules and weak labeling of collecting ducts in cortex and medulla of rat kidney. The labeling was confined to cytoplasmic areas with no labeling of the brush border. Immunoblotting and RT-PCR/Southern blotting also revealed the presence of AQP8 protein and mRNA in rat liver, testis, epididymis, duodenum, jejunum, colon, and bronchi/trachea. Consistent with this, immunohistochemistry revealed AQP8 labeling in the hepatocytes and spematogenic cells in testis and in the basal cells in ductus epididymis, trachea, and bronchial epithelia. Moreover, AQP8 labeling was observed in the myoepithelial cells in salivary, bronchial, and tracheal glands with no labeling of acini or ductal epithelial cells. AQP8 is also present in the surface epithelial cells in duodenum, jejunum, and colon. In conclusion, AQP8 is expressed at low levels in rat kidney proximal tubules and collecting ducts, and it is present in distinct cell types in liver, testis, epididymis, duodenum, jejunum, colon, trachea, and principal bronchi as well as in multiple glands, including salivary glands.


Sign in / Sign up

Export Citation Format

Share Document