A simple method for incorporating aequorin into mammalian cells

1986 ◽  
Vol 251 (2) ◽  
pp. C323-C326 ◽  
Author(s):  
A. B. Borle ◽  
C. C. Freudenrich ◽  
K. W. Snowdowne

A simple method for incorporating aequorin into mammalian cells to measure cytosolic ionized Ca2+ is described and compared with scrape loading and hypoosmotic treatment (HOST). The procedure consists of incubating the cells for 10 min and centrifuging them at 200 g for 30 s in the presence of aequorin. This method incorporates the same amount of photoprotein as scrape loading but 70% less than HOST. Cytosolic ionized Ca2+ has been measured in hepatocytes, kidney cells and tubules, macrophages, and cardiac myocytes loaded with aequorin by this new procedure.

1984 ◽  
Vol 98 (4) ◽  
pp. 1556-1564 ◽  
Author(s):  
P L McNeil ◽  
R F Murphy ◽  
F Lanni ◽  
D L Taylor

We describe a simple method for loading exogenous macromolecules into the cytoplasm of mammalian cells adherent to tissue culture dishes. Culture medium was replaced with a thin layer of fluorescently labeled macromolecules, the cells were harvested from the substrate by scraping with a rubber policeman, transferred immediately to ice cold media, washed, and then replated for culture. We refer to the method as "scrape-loading." Viability of cells was 50-60% immediately after scrape-loading and was 90% for those cells remaining after 24 h of culture. About 40% of adherent, well-spread fibroblasts contained fluorescent molecules 18 h after scrape-loading of labeled dextrans, ovalbumin, or immunoglobulin-G. On average, 10(7) dextran molecules (70,000-mol wt) were incorporated into each fibroblast by scrape-loading in 10 mg/ml dextran. The extent of loading depended on the concentration and molecular weight of the dextrans used. A fluorescent analog of actin could also be loaded into fibroblasts where it labeled stress fibers. HeLa cells, a macrophage-like cell line, 1774A.1, and human neutrophils were all successfully loaded with dextran by scraping. The method of scrape-loading should be applicable to a broad range of adherent cell types, and useful for loading of diverse kinds of macromolecules.


Since the publication of the first edition of Gene Targeting: A Practical Approach in 1993 there have been many advances in gene targeting and this new edition has been thoroughly updated and rewritten to include all the major new techniques. It provides not only tried-and-tested practical protocols but detailed guidance on their use and applications. As with the previous edition Gene Targeting: A Practical Approach 2e concentrates on gene targeting in mouse ES cells, but the techniques described can be easily adapted to applications in tissue culture including those for human cells. The first chapter covers the design of gene targeting vectors for mammalian cells and describes how to distinguish random integrations from homologous recombination. It is followed by a chapter on extending conventional gene targeting manipulations by using site-specific recombination using the Cre-loxP and Flp-FRT systems to produce 'clean' germline mutations and conditionally (in)activating genes. Chapter 3 describes methods for introducing DNA into ES cells for homologous recombination, selection and screening procedures for identifying and recovering targeted cell clones, and a simple method for establishing new ES cell lines. Chapter 4 discusses the pros and cons or aggregation versus blastocyst injection to create chimeras, focusing on the technical aspects of generating aggregation chimeras and then describes some of the uses of chimeras. The next topic covered is gene trap strategies; the structure, components, design, and modification of GT vectors, the various types of GT screens, and the molecular analysis of GT integrations. The final chapter explains the use of classical genetics in gene targeting and phenotype interpretation to create mutations and elucidate gene functions. Gene Targeting: A Practical Approach 2e will therefore be of great value to all researchers studying gene function.


1975 ◽  
Vol 9 (1) ◽  
pp. 61-68 ◽  
Author(s):  
T. Waller

Growth patterns of Nosema cuniculi ( Encephalitozoon cuniculi) in cell cultures of bovine kidney, canine kidney, feline lung, and rabbit kidney were studied. All cell cultures used were easy to manage and the last 3 are commercially-available established cell lines. The dog kidney cells were the most suitable for large-scale production of Nosema. When grown in plastic flasks with a bottom area of 75 cm2, the weekly yield from Nosema-infected canine kidney cells during the 10th to 17th week after inoculation was between 4·1 x 107 and 9·9 x 107 spores per flask. An equilibrium was obtained between the Nosema infection and the kidney cells during this time. A simple method for estimating the numbel of harvested spores is also described.


2010 ◽  
Vol 2010 ◽  
pp. 1-10 ◽  
Author(s):  
Paromita Raychaudhury ◽  
Ashis K. Basu

-Radiation-induced intrastrand guanine-thymine cross-link, G[8,5-Me]T, hinders replicationin vitroand is mutagenic in mammalian cells. Herein we reportin vitrotranslesion synthesis of G[8,5-Me]T by human and yeast DNA polymerase (hPol and yPol ). dAMP misincorporation opposite the cross-linked G by yPol was preferred over correct incorporation of dCMP, but further extension was 100-fold less efficient for :A compared to :C. For hPol , both incorporation and extension were more efficient with the correct nucleotides. To evaluate translesion synthesis in the presence of all four dNTPs, we have developed a plasmid-based DNA sequencing assay, which showed that yPol was more error-prone. Mutational frequencies of yPol and hPol were 36% and 14%, respectively. Targeted was the dominant mutation by both DNA polymerases. But yPol induced targeted in 23% frequency relative to 4% by hPol . For yPol , targeted and constituted 83% of the mutations. By contrast, with hPol , semi-targeted mutations (7.2%), that is, mutations at bases near the lesion, occurred at equal frequency as the targeted mutations (6.9%). The kind of mutations detected with hPol showed significant similarities with the mutational spectrum of G[8,5-Me]T in human embryonic kidney cells.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0240769
Author(s):  
Prasanna Channathodiyil ◽  
Jonathan Houseley

A simple method for extraction of high quality RNA from cells that have been fixed, stained and sorted by flow cytometry would allow routine transcriptome analysis of highly purified cell populations and single cells. However, formaldehyde fixation impairs RNA extraction and inhibits RNA amplification. Here we show that good quality RNA can be readily extracted from stained and sorted mammalian cells if formaldehyde is replaced by glyoxal—a well-characterised fixative that is widely compatible with immunofluorescent staining methods. Although both formaldehyde and glyoxal efficiently form protein-protein crosslinks, glyoxal does not crosslink RNA to proteins nor form stable RNA adducts, ensuring that RNA remains accessible and amenable to enzymatic manipulation after glyoxal fixation. We find that RNA integrity is maintained through glyoxal fixation, permeabilisation with methanol or saponin, indirect immunofluorescent staining and flow sorting. RNA can then be extracted by standard methods and processed into RNA-seq libraries using commercial kits; mRNA abundances measured by poly(A)+ RNA-seq correlate well between freshly harvested cells and fixed, stained and sorted cells. We validate the applicability of this approach to flow cytometry by staining MCF-7 cells for the intracellular G2/M-specific antigen cyclin B1 (CCNB1), and show strong enrichment for G2/M-phase cells based on transcriptomic data. Switching to glyoxal fixation with RNA-compatible staining methods requires only minor adjustments of most existing staining and sorting protocols, and should facilitate routine transcriptomic analysis of sorted cells.


1989 ◽  
Vol 94 (3) ◽  
pp. 517-525
Author(s):  
A.M. Mes-Masson ◽  
S. Masson ◽  
D. Banville ◽  
L. Chalifour

A recombinant plasmid (pMTONCO) containing the coding sequences for rat oncomodulin under the direction of the metallothionein promoter was constructed. pMTONCO was co-transfected with the pSV2-NEO plasmid into primary mouse kidney cells or Rat-1 cells using the calcium phosphate technique and stable transformants were isolated after selection with G418. Transcription from the metallothionein promoter was inducible with heavy metals and produced an oncomodulin-specific mRNA. The presence of oncomodulin protein in stable cell lines was verified by immunoprecipitation with specific antisera. While a plasmid encoding the polyomavirus T-antigens was able to prolong the life-span of primary mouse kidney cells in culture, no equivalent activity was noted when the pMTONCO plasmid was used to transfect primary cells. When expressed in Rat-1 cells, oncomodulin did not affect the growth properties of these cells, nor did it predispose cells to higher frequencies of oncogenic transformation to a viral oncogene. We conclude that oncomodulin is neither an immortalizing nor transforming agent in vitro.


1965 ◽  
Vol 25 (1) ◽  
pp. 103-107 ◽  
Author(s):  
Susumu Kishimoto ◽  
Irving Lieberman

When kidney cells are cultured directly from the rabbit, the nuclear membranes undergo a change that can be measured as an increase in electrophoretic mobility. The change appears to begin immediately upon culture and is maximal 2 hours later, after which the mobility remains constant at the elevated level. Actinomycin D and p-fluorophenylalanine, but not EDTA or ionizing radiation, suppress the increase in nuclear electrophoretic mobility. With synchronously growing L cells, no change was detected in nuclei from cells taken during various parts of the division cycle.


2005 ◽  
Vol 391 (1) ◽  
pp. 33-40 ◽  
Author(s):  
Nedjma Zidi-Yahiaoui ◽  
Isabelle Mouro-Chanteloup ◽  
Anne-Marie D'Ambrosio ◽  
Claude Lopez ◽  
Pierre Gane ◽  
...  

The mammalian Rh (Rhesus) protein family belongs to the Amt/Mep (ammonia transporter/methylammonium permease)/Rh superfamily of ammonium transporters. Whereas RhCE, RhD and RhAG are erythroid specific, RhBG and RhCG are expressed in key organs associated with ammonium transport and metabolism. We have investigated the ammonium transport function of human RhBG and RhCG by comparing intracellular pH variation in wild-type and transfected HEK-293 (human embryonic kidney) cells and MDCK (Madin–Darby canine kidney) cells in the presence of ammonium (NH4+/NH3) gradients. Stopped-flow spectrofluorimetry analysis, using BCECF [2′,7′-bis-(2-carboxyethyl)-5(6)-carboxyfluorescein] as a pH-sensitive probe, revealed that all cells submitted to inwardly or outwardly directed ammonium gradients exhibited rapid alkalinization or acidification phases respectively, which account for ammonium movements in transfected and native cells. However, as compared with wild-type cells known to have high NH3 lipid permeability, RhBG- and RhCG-expressing cells exhibited ammonium transport characterized by: (i) a five to six times greater kinetic rate-constant; (ii) a weak temperature-dependence; and (iii) reversible inhibition by mercuric chloride (IC50: 52 μM). Similarly, when subjected to a methylammonium gradient, RhBG- and RhCG-expressing cells exhibited kinetic rate constants greater than those of native cells. However, these constants were five times higher for RhBG as compared with RhCG, suggesting a difference in substrate accessibility. These results, indicating that RhBG and RhCG facilitate rapid and low-energy-dependent bi-directional ammonium movement across the plasma membrane, favour the hypothesis that these Rh glycoproteins, together with their erythroid homologue RhAG [Ripoche, Bertrand, Gane, Birkenmeier, Colin and Cartron (2005) Proc. Natl. Acad. Sci. U.S.A. 101, 17222–17227] constitute a family of NH3 channels in mammalian cells.


1995 ◽  
Vol 73 (5-6) ◽  
pp. 261-268 ◽  
Author(s):  
Nabila M. Shanbaky ◽  
Thomas A. Pressley

DNA-mediated gene transfer into mammalian cells was used as a model for investigating the regulation of Na,K-ATPase abundance. Complementary DNA encoding the catalytic α1-subunit from rat was introduced into ouabain-sensitive monkey kidney cells, and transfectants were selected by their ability to survive in normally cytotoxic concentrations of ouabain. The overall specific activity of Na,K-ATPase in the membranes of transfectants was not significantly different from that in control cells, suggesting that there was a partial replacement, rather than an addition, of introduced α1 for the endogenous subunit in the functional enzyme. Immunoblotting with specific antibodies confirmed the similarities in overall α abundance between control and transfected cells. Hybridization analysis of total RNA, however, revealed a higher abundance of the mRNA encoding total α1 in transfected cells. The results suggest that endogenous and introduced α-subunit compete for a limited amount of β, with rapid degradation of unassembled subunits.Key words: DNA-mediated gene transfer, immunoblots, protein abundance, subunit assembly.


Sign in / Sign up

Export Citation Format

Share Document