Arg-Gly-Asp peptide increases endothelial hydraulic conductivity: comparison with thrombin response

1995 ◽  
Vol 269 (1) ◽  
pp. C110-C117 ◽  
Author(s):  
R. L. Qiao ◽  
W. Yan ◽  
H. Lum ◽  
A. B. Malik

The contribution of integrin receptors to the regulation of endothelial permeability was studied using cultured bovine pulmonary microvascular endothelial cell (BPMVEC) monolayers by the measurement of hydraulic conductivity (Lp). Treatment of monolayers with a peptide containing the sequence Gly-Arg-Gly-Asp-Ser-Pro (GRGDSP) (0.85 mM) to compete for the RGD sequence of extracellular matrix (ECM) proteins increased endothelial Lp threefold, whereas the control peptide Gly-Arg-Gly-Glu-Ser-Pro had no effect on Lp. This action of GRGDSP on Lp was not significantly altered by dibutyryl adenosine 3',5'-cyclic monophosphate (DBcAMP; 0.5 mM). Endothelial Lp increased twofold when the monolayers were challenged with alpha-thrombin (5 x 10(-8) M for 10 min), and this response was completely reversed by DBcAMP. The strength of adhesion of endothelial cells was estimated by evaluating the ability of endothelial cells to remain attached to ECM after treating the monolayers with 0.05% trypsin plus 0.5 mM EDTA. Exposure of the monolayers to either GRGDSP or alpha-thrombin significantly reduced the strength of adhesion to the ECM. DBcAMP prevented the antiadhesive effect of alpha-thrombin but not that of GRGDSP. Treatment of the monolayers with either alpha-thrombin or GRGDSP caused formation of intercellular gaps, but only the thrombin-induced intercellular gaps were accompanied by reorganization of actin filaments. These results indicate that integrin binding to ECM proteins regulates an important determinant of endothelial permeability and that alpha-thrombin and GRGDSP increase endothelial cell monolayer permeability by different mechanisms.

1993 ◽  
Vol 265 (2) ◽  
pp. C439-C446 ◽  
Author(s):  
R. Qiao ◽  
A. Siflinger-Birnboim ◽  
H. Lum ◽  
C. Tiruppathi ◽  
A. B. Malik

We studied the effects of albumin and the lectin Ricinus communis agglutinin (RCA) on hydraulic conductivity (Lp) of bovine pulmonary microvascular endothelial cell monolayers (BPMVEC) because of the evidence that albumin and RCA can interfere with transendothelial albumin permeability (Siflinger-Birnboim, A., J. Schnitzer, H. Lum, F. Blumenstock, C. Shen, P. Del Vecchio, and A. Malik. J. Cell. Physiol. 149: 575-584, 1991). BPMVEC were seeded on microporous polycarbonate filters, and the liquid flux was measured by collecting effluent into a tubing of known inner diameter at transendothelial hydrostatic pressures (P) ranging from 5 to 20 cmH2O. Lp was calculated as the slope of the relationship of liquid flux per unit surface area (Jv) vs. P. Addition of RCA (50 micrograms/ml) or albumin (5 mg/ml) to the endothelial cell medium containing albumin-free Hanks' balanced saline solution (HBSS) decreased total Lp (expressed x 10(-6) cm.s-1 x cmH2O-1) from 17.2 +/- 3.6 during HBSS to 4.7 +/- 0.9 during albumin and 5.7 +/- 1.6 during RCA (P < 0.01 for both). The RCA effect, but not that of albumin, was prevented by the addition of D-galactose (0.1 M) (the cognate hapten monosaccharide of RCA). We determined the contribution of the extracellular matrix (ECM) in decreasing the Lp by obtaining ECM after treatment of the monolayers with 0.025 M NH4OH to detach endothelial cells from the ECM. Basal ECM Lp (expressed x 10(-6) cm.s-1 x cmH2O-1) was 57.0 +/- 15.3, and it decreased to 19.7 +/- 4.3 and 17.5 +/- 2.9 during RCA and albumin, respectively (P < 0.01 for both). In contrast, RCA and albumin did not alter the filter Lp values. Another lectin, Ulex europaeus agglutinin, and the protein immunoglobulin G had no effect on Lp values.(ABSTRACT TRUNCATED AT 250 WORDS)


2001 ◽  
Vol 69 (2) ◽  
pp. 845-852 ◽  
Author(s):  
Gregor Zysk ◽  
Barbara Katharina Schneider-Wald ◽  
Jae Hyuk Hwang ◽  
Levente Bejo ◽  
Kwang Sik Kim ◽  
...  

ABSTRACT In pneumococcal meningitis it is assumed that bacteria cross the blood-brain barrier (BBB), which consists mainly of cerebral endothelial cells. The effect of Streptococcus pneumoniaeon the BBB was investigated with an in vitro BBB model using a human brain microvascular endothelial cell line (HBMEC) and primary cultures of bovine brain microvascular endothelial cells (BBMEC). Within a few hours of incubation with pneumococci, rounding and detachment of the HBMEC were observed, and the transendothelial electrical resistance of the BBMEC monolayer decreased markedly. An S. pneumoniaemutant deficient in pneumolysin did not affect the integrity of the endothelial cell monolayer. Neither cell wall fragments nor isolated pneumococcal cell walls induced changes of endothelial cell morphology. However, purified pneumolysin caused endothelial cell damage comparable to that caused by the viable pneumococci. The cell detachment was dependent on de novo protein synthesis and required the activities of caspase and tyrosine kinases. The results show that pneumolysin is an important component for damaging the BBB and may contribute to the entry of pneumococci into the cerebral compartment and to the development of brain edema in pneumococcal meningitis.


2010 ◽  
Vol 299 (4) ◽  
pp. L513-L522 ◽  
Author(s):  
Glenda Parra-Bonilla ◽  
Diego F. Alvarez ◽  
Abu-Bakr Al-Mehdi ◽  
Mikhail Alexeyev ◽  
Troy Stevens

Pulmonary microvascular endothelial cells possess both highly proliferative and angiogenic capacities, yet it is unclear how these cells sustain the metabolic requirements essential for such growth. Rapidly proliferating cells rely on aerobic glycolysis to sustain growth, which is characterized by glucose consumption, glucose fermentation to lactate, and lactic acidosis, all in the presence of sufficient oxygen concentrations. Lactate dehydrogenase A converts pyruvate to lactate necessary to sustain rapid flux through glycolysis. We therefore tested the hypothesis that pulmonary microvascular endothelial cells express lactate dehydrogenase A necessary to utilize aerobic glycolysis and support their growth. Pulmonary microvascular endothelial cell (PMVEC) growth curves were conducted over a 7-day period. PMVECs consumed glucose, converted glucose into lactate, and acidified the media. Restricting extracellular glucose abolished the lactic acidosis and reduced PMVEC growth, as did replacing glucose with galactose. In contrast, slow-growing pulmonary artery endothelial cells (PAECs) minimally consumed glucose and did not develop a lactic acidosis throughout the growth curve. Oxygen consumption was twofold higher in PAECs than in PMVECs, yet total cellular ATP concentrations were twofold higher in PMVECs. Glucose transporter 1, hexokinase-2, and lactate dehydrogenase A were all upregulated in PMVECs compared with their macrovascular counterparts. Inhibiting lactate dehydrogenase A activity and expression prevented lactic acidosis and reduced PMVEC growth. Thus PMVECs utilize aerobic glycolysis to sustain their rapid growth rates, which is dependent on lactate dehydrogenase A.


2009 ◽  
Vol 296 (6) ◽  
pp. L1076-L1084 ◽  
Author(s):  
Jessica G. Moreland ◽  
Jessica S. Hook ◽  
Gail Bailey ◽  
Tyler Ulland ◽  
William M. Nauseef

Francisella tularensis, the causative agent of tularemia, is a highly virulent organism, especially when exposure occurs by inhalation. Recent data suggest that Francisella interacts directly with alveolar epithelial cells. Although F. tularensis causes septicemia and can live extracellularly in a murine infection model, there is little information about the role of the vascular endothelium in the host response. We hypothesized that F. tularensis would interact with pulmonary endothelial cells as a prerequisite to the clinically observed recruitment of neutrophils to the lung. Using an in vitro Transwell model system, we studied interactions between F. tularensis live vaccine strain ( Ft LVS) and a pulmonary microvascular endothelial cell (PMVEC) monolayer. Organisms invaded the endothelium and were visualized within individual endothelial cells by confocal microscopy. Although these bacteria-endothelial cell interactions did not elicit production of the proinflammatory chemokines, polymorphonuclear leukocytes (PMN) were stimulated to transmigrate across the endothelium in response to Ft LVS. Moreover, transendothelial migration altered the phenotype of recruited PMN; i.e., the capacity of these PMN to activate NADPH oxidase and release elastase in response to subsequent stimulation was reduced compared with PMN that traversed PMVEC in response to Streptococcus pneumoniae. The blunting of PMN responsiveness required PMN transendothelial migration but did not require PMN uptake of Ft LVS, was not dependent on the presence of serum-derived factors, and was not reproduced by Ft LVS-conditioned medium. We speculate that the capacity of Ft LVS-stimulated PMVEC to support transendothelial migration of PMN without triggering release of IL-8 and monocyte chemotactic protein-1 and to suppress the responsiveness of transmigrated PMN to subsequent stimulation could contribute to the dramatic virulence during inhalational challenge with Francisella.


1997 ◽  
Vol 77 (05) ◽  
pp. 1014-1019 ◽  
Author(s):  
W Craig Hooper ◽  
Donald J Phillips ◽  
Bruce L Evatt

SummaryWe have recently demonstrated that the proinflammatory cytokine, interleukin-6 (IL-6), could upregulate the production of protein S in the human hepatoma cell line, HepG-2, but not in endothelial cells. In this study, we have demonstrated that the combination of exogenous IL-6 and soluble IL-6 receptor (sIL-6R) could significantly upregulate protein S production in both primary human umbilical vein endothelial cells (HUVEC) and in the immortalized human microvascular endothelial cell line, HMEC-1. The IL-6/sIL-6R complex was also able to rapidly induce tyrosine phosphorylation of the IL-6 transducer, gpl30. Neutralizing antibodies directed against either IL-6 or gpl30 blocked protein S upregulation by the IL-6/sIL-6R complex. It was also observed that exogenous sIL-6R could also upregulate protein S by forming a complex with IL-6 constitutively produced by the endothelial cell. Two other cytokines which also utilize the gpl30 receptor, oncostatin M (OSM) and leukemia inhibitory factor (LIF), were also able to upregulate endothelial cell protein S. This study demonstrates a mechanism that allows endothelial cells to respond to IL-6 and also illustrates the potential importance of circulating soluble receptors in the regulation of the anticoagulation pathway.


Author(s):  
A. Krüger-Genge ◽  
S. Steinbrecht ◽  
C.G.H. Jung ◽  
Sophia Westphal ◽  
Stefanie Klöpzig ◽  
...  

Within the last years a comprehensive number of scientific studies demonstrated beneficial effect of Arthropira platensis (AP) as dietary supplement due to a high content of proteins, minerals and vitamins. Positive effects like promoting the immune system, reducing inflammation and an anti-oxidant capacity are reported. In this study, the effect of an aqueous AP extract on primary human venous endothelial cells (HUVEC) was investigated. In addition, the effect of AP on HUVEC treated with a bacterial toxin (lipopolysaccharide, LPA), inducing an activation of HUVEC and cellular detachment, was analyzed. Depending on the concentration of AP extract a significantly accelerated formation of an endothelial cell monolayer was observed. Furthermore, the detachment of HUVEC after LPA addition was dramatically reduced by AP. In conclusion, the data are promising and indicatory for an application of Arthrospira platensis in the clinical field.


1998 ◽  
Vol 275 (2) ◽  
pp. L203-L222 ◽  
Author(s):  
Timothy M. Moore ◽  
Paul M. Chetham ◽  
John J. Kelly ◽  
Troy Stevens

Pulmonary endothelium forms a semiselective barrier that regulates fluid balance and leukocyte trafficking. During the course of lung inflammation, neurohumoral mediators and oxidants act on endothelial cells to induce intercellular gaps permissive for transudation of proteinaceous fluid from blood into the interstitium. Intracellular signals activated by neurohumoral mediators and oxidants that evoke intercellular gap formation are incompletely understood. Cytosolic Ca2+ concentration ([Ca2+]i) and cAMP are two signals that importantly dictate cell-cell apposition. Although increased [Ca2+]ipromotes disruption of the macrovascular endothelial cell barrier, increased cAMP enhances endothelial barrier function. Furthermore, during the course of inflammation, elevated endothelial cell [Ca2+]idecreases cAMP to facilitate intercellular gap formation. Given the significance of both [Ca2+]iand cAMP in mediating cell-cell apposition, this review addresses potential sites of cross talk between these two intracellular signaling pathways. Emerging data also indicate that endothelial cells derived from different vascular sites within the pulmonary circulation exhibit distinct sensitivities to permeability-inducing stimuli; that is, elevated [Ca2+]ipromotes macrovascular but not microvascular barrier disruption. Thus this review also considers the roles of [Ca2+]iand cAMP in mediating site-specific alterations in endothelial permeability.


2001 ◽  
Vol 90 (6) ◽  
pp. 2279-2288 ◽  
Author(s):  
Martin H. Beauchamp ◽  
Ana Katherine Martinez-Bermudez ◽  
Fernand Gobeil ◽  
Anne Marilise Marrache ◽  
Xin Hou ◽  
...  

Microvascular degeneration is an important event in oxygen-induced retinopathy (OIR), a model of retinopathy of prematurity. Because oxidant stress abundantly generates thromboxane A2(TxA2), we tested whether TxA2plays a role in retinal vasoobliteration of OIR and contributes to such vascular degeneration by direct endothelial cytotoxicity. Hyperoxia-induced retinal vasoobliteration in rat pups (80% O2exposure from postnatal days 5–14) was associated with increased TxB2generation and was significantly prevented by TxA2synthase inhibitor CGS-12970 (10 mg · kg−1· day−1) or TxA2-receptor antagonist CGS-22652 (10 mg · kg−1· day−1). TxA2mimetics U-46619 (EC5050 nM) and I-BOP (EC505 nM) caused a time- and concentration-dependent cell death of neuroretinovascular endothelial cells from rats as well as newborn pigs but not of smooth muscle and astroglial cells; other prostanoids did not cause cell death. The peroxidation product 8-iso-PGF2, which is generated in OIR, stimulated TxA2formation by endothelial cells and triggered cell death; these effects were markedly diminished by CGS-12970. TxA2-dependent neuroretinovascular endothelial cell death was mostly by necrosis and to a lesser extent by apoptosis. The data identify an important role for TxA2in vasoobliteration of OIR and unveil a so far unknown function for TxA2in directly triggering neuroretinal microvascular endothelial cell death. These effects of TxA2might participate in other ischemic neurovascular injuries.


Sign in / Sign up

Export Citation Format

Share Document