scholarly journals Francisella tularensisdirectly interacts with the endothelium and recruits neutrophils with a blunted inflammatory phenotype

2009 ◽  
Vol 296 (6) ◽  
pp. L1076-L1084 ◽  
Author(s):  
Jessica G. Moreland ◽  
Jessica S. Hook ◽  
Gail Bailey ◽  
Tyler Ulland ◽  
William M. Nauseef

Francisella tularensis, the causative agent of tularemia, is a highly virulent organism, especially when exposure occurs by inhalation. Recent data suggest that Francisella interacts directly with alveolar epithelial cells. Although F. tularensis causes septicemia and can live extracellularly in a murine infection model, there is little information about the role of the vascular endothelium in the host response. We hypothesized that F. tularensis would interact with pulmonary endothelial cells as a prerequisite to the clinically observed recruitment of neutrophils to the lung. Using an in vitro Transwell model system, we studied interactions between F. tularensis live vaccine strain ( Ft LVS) and a pulmonary microvascular endothelial cell (PMVEC) monolayer. Organisms invaded the endothelium and were visualized within individual endothelial cells by confocal microscopy. Although these bacteria-endothelial cell interactions did not elicit production of the proinflammatory chemokines, polymorphonuclear leukocytes (PMN) were stimulated to transmigrate across the endothelium in response to Ft LVS. Moreover, transendothelial migration altered the phenotype of recruited PMN; i.e., the capacity of these PMN to activate NADPH oxidase and release elastase in response to subsequent stimulation was reduced compared with PMN that traversed PMVEC in response to Streptococcus pneumoniae. The blunting of PMN responsiveness required PMN transendothelial migration but did not require PMN uptake of Ft LVS, was not dependent on the presence of serum-derived factors, and was not reproduced by Ft LVS-conditioned medium. We speculate that the capacity of Ft LVS-stimulated PMVEC to support transendothelial migration of PMN without triggering release of IL-8 and monocyte chemotactic protein-1 and to suppress the responsiveness of transmigrated PMN to subsequent stimulation could contribute to the dramatic virulence during inhalational challenge with Francisella.

Author(s):  
Junxia Li ◽  
Yiming Xia ◽  
Zhizhong Huang ◽  
Yan Zhao ◽  
Renping Xiong ◽  
...  

Hypoxia-induced pulmonary microvascular endothelial cell (PMVEC) monolayers hyperpermeability is vital for vascular leakage, which participates in vascular diseases, such as acute lung injury (ALI) and high altitude pulmonary edema (HAPE). We previously observed PMVEC permeability was markedly elevated in hypoxia when cocultured with primary type II alveolar epithelial cells (AECII) in which isthmin1(ISM1) was highly upregulated. However, whether the upregulation of ISM1 plays a role in hypoxia-induced PMVEC hyperpermeability is unclear. In this study, we assessed the role of AECII-derived ISM1 in hypoxia-induced PMVEC hyperpermeability with an AECII/PMVEC co-culture system and uncovered the underlying mechanism whereby hypoxia stimulates ISM1 gene expression. We found that ISM1 gene expression was upregulated in cultured AECII cells exposed to hypoxia (3% O2), and that AECII-derived ISM1 participated in hypoxia-induced hyperpermeability of PMVEC monolayers since siRNA-mediated knockdown of ISM1 in AECII markedly attenuated the increasement of PMVEC permeability in co-culture system under hypoxia. Additionally, we confirmed that ISM1 was regulated by hypoxia-inducible factor-1α (HIF1α) according to the evidence that silencing of HIF1α inhibited the hypoxia-mediated upregulation of ISM1. Mechanismly, overexpression of HIF1α transcriptionally activated ISM1 gene expression by directly binding to the conserved regulatory elements upstream of the ism1 locus. We identified a novel HIF-1-target gene ISM1, which involves in hyperpermeability of pulmonary microvascular endothelial cell monolayers under hypoxia. Our in vitro cell experiments implied that the upregulated ISM1 derived from alveolar epithelium might be a vital modulator in hypoxia-induced endothelial hyperpermeability and thereby implicates with hypoxic pulmonary-related diseases.


2012 ◽  
Vol 303 (2) ◽  
pp. L141-L151 ◽  
Author(s):  
Ayako Shigeta ◽  
Yuji Tada ◽  
Ji-Yang Wang ◽  
Shunsuke Ishizaki ◽  
Junichi Tsuyusaki ◽  
...  

Excessive apoptosis and prolonged inflammation of alveolar cells are associated with the pathogenesis of pulmonary emphysema. We aimed to determine whether CD40 affects alveolar epithelial cells and endothelial cells, with regard to evoking apoptosis and inflammation. Mice were repeatedly treated with agonistic-anti CD40 antibody (Ab), with or without agonistic-anti Fas Ab, and evaluated for apoptosis and inflammation in lungs. Human pulmonary microvascular endothelial cells and alveolar epithelial cells were treated with agonistic anti-CD40 Ab and/or anti-Fas Ab to see their direct effect on apoptosis and secretion of proinflammatory molecules in vitro. Furthermore, plasma soluble CD40 ligand (sCD40L) level was evaluated in patients with chronic obstructive pulmonary disease (COPD). In mice, inhaling agonistic anti-CD40 Ab induced moderate alveolar enlargement. CD40 stimulation, in combination with anti-Fas Ab, induced significant emphysematous changes and increased alveolar cell apoptosis. CD40 stimulation also enhanced IFN-γ-mediated emphysematous changes, not via apoptosis induction, but via inflammation with lymphocyte accumulation. In vitro, Fas-mediated apoptosis was enhanced by CD40 stimulation and IFN-γ in endothelial cells and by CD40 stimulation in epithelial cells. CD40 stimulation induced secretion of CCR5 ligands in endothelial cells, enhanced with IFN-γ. Plasma sCD40L levels were significantly increased in patients with COPD, inversely correlating to the percentage of forced expiratory volume in 1 s and positively correlating to low attenuation area score by CT scan, regardless of smoking history. Collectively CD40 plays a contributing role in the development of pulmonary emphysema by sensitizing Fas-mediated apoptosis in alveolar cells and increasing the secretion of proinflammatory chemokines.


1995 ◽  
Vol 269 (1) ◽  
pp. L127-L135 ◽  
Author(s):  
W. W. Barton ◽  
S. Wilcoxen ◽  
P. J. Christensen ◽  
R. Paine

Intercellular adhesion molecule-1 (ICAM-1) is expressed at high levels on type I alveolar epithelial cells in the normal lung and is induced in vitro as type II cells spread in primary culture. In contrast, in most nonhematopoetic cells ICAM-1 expression is induced in response to inflammatory cytokines. We have formed the hypothesis that the signals that control ICAM-1 expression in alveolar epithelial cells are fundamentally different from those controlling expression in most other cells. To test this hypothesis, we have investigated the influence of inflammatory cytokines on ICAM-1 expression in isolated type II cells that have spread in culture and compared this response to that of rat pulmonary artery endothelial cells (RPAEC). ICAM-1 protein, determined both by a cell-based enzyme-linked immunosorbent assay and by Western blot analysis, and mRNA were minimally expressed in unstimulated RPAEC but were significantly induced in a time- and dose-dependent manner by treatment with tumor necrosis factor-alpha, interleukin-1 beta, or interferon-gamma. In contrast, these cytokines did not influence the constitutive high level ICAM-1 protein expression in alveolar epithelial cells and only minimally affected steady-state mRNA levels. ICAM-1 mRNA half-life, measured in the presence of actinomycin D, was relatively long at 7 h in alveolar epithelial cells and 4 h in RPAEC. The striking lack of response of ICAM-1 expression by alveolar epithelial cells to inflammatory cytokines is in contrast to virtually all other epithelial cells studied to date and supports the hypothesis that ICAM-1 expression by these cells is a function of cellular differentiation.(ABSTRACT TRUNCATED AT 250 WORDS)


1995 ◽  
Vol 269 (1) ◽  
pp. C110-C117 ◽  
Author(s):  
R. L. Qiao ◽  
W. Yan ◽  
H. Lum ◽  
A. B. Malik

The contribution of integrin receptors to the regulation of endothelial permeability was studied using cultured bovine pulmonary microvascular endothelial cell (BPMVEC) monolayers by the measurement of hydraulic conductivity (Lp). Treatment of monolayers with a peptide containing the sequence Gly-Arg-Gly-Asp-Ser-Pro (GRGDSP) (0.85 mM) to compete for the RGD sequence of extracellular matrix (ECM) proteins increased endothelial Lp threefold, whereas the control peptide Gly-Arg-Gly-Glu-Ser-Pro had no effect on Lp. This action of GRGDSP on Lp was not significantly altered by dibutyryl adenosine 3',5'-cyclic monophosphate (DBcAMP; 0.5 mM). Endothelial Lp increased twofold when the monolayers were challenged with alpha-thrombin (5 x 10(-8) M for 10 min), and this response was completely reversed by DBcAMP. The strength of adhesion of endothelial cells was estimated by evaluating the ability of endothelial cells to remain attached to ECM after treating the monolayers with 0.05% trypsin plus 0.5 mM EDTA. Exposure of the monolayers to either GRGDSP or alpha-thrombin significantly reduced the strength of adhesion to the ECM. DBcAMP prevented the antiadhesive effect of alpha-thrombin but not that of GRGDSP. Treatment of the monolayers with either alpha-thrombin or GRGDSP caused formation of intercellular gaps, but only the thrombin-induced intercellular gaps were accompanied by reorganization of actin filaments. These results indicate that integrin binding to ECM proteins regulates an important determinant of endothelial permeability and that alpha-thrombin and GRGDSP increase endothelial cell monolayer permeability by different mechanisms.


Pathogens ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 708
Author(s):  
Ana María Rodríguez ◽  
Aldana Trotta ◽  
Agustina P. Melnyczajko ◽  
M. Cruz Miraglia ◽  
Kwang Sik Kim ◽  
...  

Central nervous system invasion by bacteria of the genus Brucella results in an inflammatory disorder called neurobrucellosis. A common feature associated with this pathology is blood–brain barrier (BBB) activation. However, the underlying mechanisms involved with such BBB activation remain unknown. The aim of this work was to investigate the role of Brucella abortus-stimulated platelets on human brain microvascular endothelial cell (HBMEC) activation. Platelets enhanced HBMEC activation in response to B. abortus infection. Furthermore, supernatants from B. abortus-stimulated platelets also activated brain endothelial cells, inducing increased secretion of IL-6, IL-8, CCL-2 as well as ICAM-1 and CD40 upregulation on HBMEC compared with supernatants from unstimulated platelets. Outer membrane protein 19, a B. abortus lipoprotein, recapitulated B. abortus-mediated activation of HBMECs by platelets. In addition, supernatants from B. abortus-activated platelets promoted transendothelial migration of neutrophils and monocytes. Finally, using a pharmacological inhibitor, we demonstrated that the Erk1/2 pathway is involved in the endothelial activation induced by B. abortus-stimulated platelets and also in transendothelial migration of neutrophils. These results describe a mechanism whereby B. abortus-stimulated platelets induce endothelial cell activation, promoting neutrophils and monocytes to traverse the BBB probably contributing to the inflammatory pathology of neurobrucellosis.


2021 ◽  
Author(s):  
Elina Korpela ◽  
Darren Yohan ◽  
Lee CL Chin ◽  
Anthony Kim ◽  
Xiaoyong Huang ◽  
...  

Background Most cancer patients are treated with radiotherapy, but the treatment can also damage the surrounding normal tissue. Acute skin damage from cancer radiotherapy diminishes patients’ quality of life, yet effective biological interventions for this damage are lacking. Protecting microvascular endothelial cells from irradiation-induced perturbations is emerging as a targeted damage-reduction strategy. Since Angiopoetin-1 signaling through the Tie2 receptor on endothelial cells opposes microvascular perturbations in other disease contexts, we used a preclinical Angiopoietin-1 mimic called Vasculotide to investigate its effect on skin radiation toxicity using a preclinical model. Methods Athymic mice were treated intraperitoneally with saline or Vasculotide and their flank skin was irradiated with a single large dose of ionizing radiation. Acute cutaneous damage and wound healing were evaluated by clinical skin grading, histology and immunostaining. Diffuse reflectance optical spectroscopy, myeloperoxidase-dependent bioluminescence imaging of neutrophils and a serum cytokine array were used to assess inflammation. Microvascular endothelial cell response to radiation was tested with in vitro clonogenic and Matrigel tubule formation assays. Tumour xenograft growth delay experiments were also performed. Appreciable differences between treatment groups were assessed mainly using parametric and non-parametric statistical tests comparing areas under curves, followed by post-hoc comparisons. Results In vivo, different schedules of Vasculotide treatment reduced the size of the irradiation-induced wound. Although skin damage scores remained similar on individual days, Vasculotide administered post irradiation resulted in less skin damage overall. Vasculotide alleviated irradiation-induced inflammation in the form of reduced levels of oxygenated hemoglobin, myeloperoxidase bioluminescence and chemokine MIP-2. Surprisingly, Vasculotide-treated animals also had higher microvascular endothelial cell density in wound granulation tissue. In vitro, Vasculotide enhanced the survival and function of irradiated endothelial cells. Conclusions Vasculotide administration reduces acute skin radiation damage in mice, and may do so by affecting several biological processes. This radiation protection approach may have clinical impact for cancer radiotherapy patients by reducing the severity of their acute skin radiation damage.


2020 ◽  
Vol 21 (15) ◽  
pp. 5249 ◽  
Author(s):  
Anne-Claire Lagrée ◽  
Fabienne Fasani ◽  
Clotilde Rouxel ◽  
Marine Pivet ◽  
Marie Pourcelot ◽  
...  

Microvascular endothelial cells constitute potential targets for exogenous microorganisms, in particular for vector-borne pathogens. Their phenotypic and functional variations according to the organs they are coming from provide an explanation of the organ selectivity expressed in vivo by pathogens. In order to make available relevant tools for in vitro studies of infection mechanisms, our aim was to immortalize bovine organospecific endothelial cells but also to assess their permissivity to viral infection. Using transfection with SV40 large T antigen, six bovine microvascular endothelial cell lines from various organs and one macrovascular cell line from an umbilical cord were established. They display their own panel of endothelial progenitor/mature markers, as assessed by flow cytometry and RT-qPCR, as well as the typical angiogenesis capacity. Using both Bluetongue and foot-and-mouth disease viruses, we demonstrate that some cell lines are preferentially infected. In addition, they can be transfected and are able to express viral proteins such as BTV8-NS3. Such microvascular endothelial cell lines bring innovative tools for in vitro studies of infection by viruses or bacteria, allowing for the study of host-pathogen interaction mechanisms with the actual in vivo target cells. They are also suitable for applications linked to microvascularization, such as anti-angiogenic and anti-tumor research, growing fields in veterinary medicine.


2021 ◽  
Author(s):  
Elina Korpela ◽  
Darren Yohan ◽  
Lee CL Chin ◽  
Anthony Kim ◽  
Xiaoyong Huang ◽  
...  

Background Most cancer patients are treated with radiotherapy, but the treatment can also damage the surrounding normal tissue. Acute skin damage from cancer radiotherapy diminishes patients’ quality of life, yet effective biological interventions for this damage are lacking. Protecting microvascular endothelial cells from irradiation-induced perturbations is emerging as a targeted damage-reduction strategy. Since Angiopoetin-1 signaling through the Tie2 receptor on endothelial cells opposes microvascular perturbations in other disease contexts, we used a preclinical Angiopoietin-1 mimic called Vasculotide to investigate its effect on skin radiation toxicity using a preclinical model. Methods Athymic mice were treated intraperitoneally with saline or Vasculotide and their flank skin was irradiated with a single large dose of ionizing radiation. Acute cutaneous damage and wound healing were evaluated by clinical skin grading, histology and immunostaining. Diffuse reflectance optical spectroscopy, myeloperoxidase-dependent bioluminescence imaging of neutrophils and a serum cytokine array were used to assess inflammation. Microvascular endothelial cell response to radiation was tested with in vitro clonogenic and Matrigel tubule formation assays. Tumour xenograft growth delay experiments were also performed. Appreciable differences between treatment groups were assessed mainly using parametric and non-parametric statistical tests comparing areas under curves, followed by post-hoc comparisons. Results In vivo, different schedules of Vasculotide treatment reduced the size of the irradiation-induced wound. Although skin damage scores remained similar on individual days, Vasculotide administered post irradiation resulted in less skin damage overall. Vasculotide alleviated irradiation-induced inflammation in the form of reduced levels of oxygenated hemoglobin, myeloperoxidase bioluminescence and chemokine MIP-2. Surprisingly, Vasculotide-treated animals also had higher microvascular endothelial cell density in wound granulation tissue. In vitro, Vasculotide enhanced the survival and function of irradiated endothelial cells. Conclusions Vasculotide administration reduces acute skin radiation damage in mice, and may do so by affecting several biological processes. This radiation protection approach may have clinical impact for cancer radiotherapy patients by reducing the severity of their acute skin radiation damage.


Sign in / Sign up

Export Citation Format

Share Document