Sulfhydryl oxidation and activation of red cell K(+)-Cl- cotransport in the transgenic SAD mouse

1995 ◽  
Vol 269 (4) ◽  
pp. C899-C906 ◽  
Author(s):  
L. De Franceschi ◽  
Y. Beuzard ◽  
C. Brugnara

The SAD mouse is characterized by the expression of human SAD hemoglobin (Hb), a super S Hb with a higher tendency to polymerize than HbS due to the presence of two additional mutations, Antilles beta 23Ile and D Punjab beta 121Glu. Monovalent cation transport was studied in erythrocytes from SAD-1 (Hb SAD = 19%) and beta-thal/SAD-1 (Hb SAD = 26%) mice. Erythrocytes containing Hb SAD exhibited dehydration, increased maximal rate of Na(+)-K+ pump, unchanged Rb+ flux via the Gardos channel, and increased K(+)-Cl- cotransport. K(+)-Cl- cotransport was defined as Cl(-)-dependent (substitution with sulfamate or methanesulfonate) okadaic acid-sensitive K+ efflux. Volume regulatory decrease via K(+)-Cl- cotransport was also increased in swollen SAD erythrocytes compared with controls. K(+)-Cl- cotransport was stimulated by staurosporine in all mouse strains, but the extent of stimulation was reduced in beta-thal/SAD-1 mice. Treatment with dithiothreitol reduced K(+)-Cl- cotransport activity in SAD-1 and beta-thal/SAD-1 mice to levels similar to that of control strains, indicating that reversible sulfhydryl oxidation contributes to the activated state of K(+)-Cl- cotransport in mouse erythrocytes that express transgenic human Hb SAD.

2019 ◽  
Vol 317 (2) ◽  
pp. C287-C302 ◽  
Author(s):  
Alicia Rivera ◽  
David H. Vandorpe ◽  
Boris E. Shmukler ◽  
Immacolata Andolfo ◽  
Achille Iolascon ◽  
...  

Hereditary xerocytosis (HX) is caused by missense mutations in either the mechanosensitive cation channel PIEZO1 or the Ca2+-activated K+channel KCNN4. All HX-associated KCNN4 mutants studied to date have revealed increased current magnitude and red cell dehydration. Baseline KCNN4 activity was increased in HX red cells heterozygous for KCNN4 mutant V282M. However, HX red cells maximally stimulated by Ca2+ionophore A23187 or by PMCA Ca2+-ATPase inhibitor orthovanadate displayed paradoxically reduced KCNN4 activity. This reduced Ca2+-stimulated mutant KCNN4 activity in HX red cells was associated with unchanged sensitivity to KCNN4 inhibitor senicapoc and KCNN4 activator Ca2+, with slightly elevated Ca2+uptake and reduced PMCA activity, and with decreased KCNN4 activation by calpain inhibitor PD150606. The altered intracellular monovalent cation content of HX red cells prompted experimental nystatin manipulation of red cell Na and K contents. Nystatin-mediated reduction of intracellular K+with corresponding increase in intracellular Na+in wild-type cells to mimic conditions of HX greatly suppressed vanadate-stimulated and A23187 -stimulated KCNN4 activity in those wild-type cells. However, conferral of wild-type cation contents on HX red cells failed to restore wild-type-stimulated KCNN4 activity to those HX cells. The phenotype of reduced, maximally stimulated KCNN4 activity was shared by HX erythrocytes expressing heterozygous PIEZO1 mutants R2488Q and V598M, but not by HX erythrocytes expressing heterozygous KCNN4 mutant R352H or PIEZO1 mutant R2456H. Our data suggest that chronic KCNN4-driven red cell dehydration and intracellular cation imbalance can lead to reduced KCNN4 activity in HX and wild-type red cells.


2008 ◽  
Vol 364 (1514) ◽  
pp. 189-194 ◽  
Author(s):  
J.C Ellory ◽  
H Guizouarn ◽  
F Borgese ◽  
L.J Bruce ◽  
R.J Wilkins ◽  
...  

The abundant membrane protein AE1 normally functions as an obligate anion exchanger, with classical carrier properties, in human red blood cells. Recently, four single point mutations of hAE1 have been identified that have lost the anion exchange function, and act as non-selective monovalent cation channels, as shown in both red cell flux and oocyte expression studies. The red cell transport function shows a paradoxical temperature dependence, and is associated with spherocytic and stomatocytic red cell defects, and haemolytic anaemias. Other forms of AE1, including the native AE1 in trout red cells, and the human mutation R760Q show both channel-like and anion exchange properties. The present results point to membrane domains 9 and 10 being important in the functional modification of AE1 activity.


2013 ◽  
Vol 45 (9) ◽  
pp. 343-350 ◽  
Author(s):  
Alicia Rivera ◽  
Robert Y. L. Zee ◽  
Seth L. Alper ◽  
Luanne L. Peters ◽  
Carlo Brugnara

Studies of ion transport pathophysiology in hematological disorders and tests of possible new therapeutic agents for these disorders have been carried out in various mouse models because of close functional similarities between mouse and human red cells. We have explored strain-specific differences in erythrocyte membrane physiology in 10 inbred mouse strains by determining erythrocyte contents of Na+, K+, and Mg2+, and erythrocyte transport of ions via the ouabain-sensitive Na-K pump, the amiloride-sensitive Na-H exchanger (NHE1), the volume and chloride-dependent K-Cl cotransporter (KCC), and the charybdotoxin-sensitive Gardos channel (KCNN4). Our data reveal substantial strain-specific and sex-specific differences in both ion content and trans-membrane ion transport in mouse erythrocytes. These differences demonstrate the feasibility of identifying specific quantitative trait loci for erythroid ion transport and content in genetically standardized inbred mouse strains.


Biochemistry ◽  
1996 ◽  
Vol 35 (37) ◽  
pp. 11959-11966 ◽  
Author(s):  
F. Tian ◽  
K.-C. Lee ◽  
W. Hu ◽  
T. A. Cross

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1244-1244
Author(s):  
Mary E. Fabry ◽  
Anne C. Rybicki ◽  
Sandra M. Suzuka ◽  
M. Cherif Rahimy ◽  
Rajagopal Krishnamoorthy ◽  
...  

Abstract Red cell density distribution affects both hemolysis and vaso-occlusion; however, currently recognized factors cannot account for all of the variation seen. We hypothesized that a range of genetically controlled factors contributes to red cell density distribution and hemolysis, which has recently received a great deal of attention from Gladwin et al for its role in sickle cell anemia (SCA) and its impact on NO metabolism. Our previous studies have demonstrated that although RBC density distribution varies significantly from patient to patient, the pattern for individual patients is stable in the absence of disease. Some genetically determined factors that affect red cell density distribution have been defined, such as alpha-thalassemia and % HbF (Fabry et al, Blood, 1982); however, neither of these factors completely predicts density distribution. The study of identical twins offers the unique opportunity to minimize some of the genetic variability between individuals that may not be relevant to RBC density while allowing the remaining differences to be detected. Because SCA patients from the US have a complex mixture of Caucasian, other ethnicities, and genes from all parts of Africa including all of the sickle haplotypes, we have chosen to recruit our population from Benin that has a single beta-globin haplotype, thus further minimizing differences arising from admixture from inside and outside of Africa. We have collected samples from six sets of monozygous twins from Benin and validated their monozygosity by DNA analysis. Of the 6 twin sets analyzed to date, 4 have alpha-thalassemia. We compared density gradients on two separate occasions, approximately one year apart, for these twins and found that density gradients for both members of all twin sets without medical complications (malaria, painful crisis) were indistinguishable. This is not true for pairs of randomly chosen individuals even after their % HbF and alpha-thalassemia status has been determined and matched. After elimination of WBCs, we were able to isolate sufficient RNA to obtain microarray data without amplification. We compared subjects with a low % dense cells vs a high % dense cells. In the combinations that were analyzed, we found a consistent pattern of up- and down-regulated genes. Down-regulated genes included the Gardos channel (KCNN4), K-Cl cotransporter (KCC1), NOS3, CAIV, and PKC. Up-regulated genes included ferritin heavy chain (probably in mitochondria that are present in reticulocytes) and 2,3-bisphosphomutase that was elevated in twins with higher MCHC (density). The latter is consistent with our previous observations and those of Poillon et al that DPG can affect polymer formation and RBC density. We conclude that the study of twins demonstrates that there is a strong genetic component in the control of sickle cell density distribution and that a better understanding of factors controlling density distribution may lead to new forms of treatment.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3890-3890
Author(s):  
Manali Joglekar ◽  
Jerry Ware ◽  
Malinda E.C. Fitzgerald ◽  
T. Kent Gartner

Abstract Thrombosis is a major component of cardiovascular disease. Thrombosis occurs in both arteries and veins. Arteries and veins differ biochemically, compositionally, structurally, and hemodynamically. Also, arterial thrombi are platelet rich and red cell poor. Thrombi in veins are red cell and fibrin rich and platelet poor. Stable thrombus formation in the carotid artery (CA) in response to FeCl3-induced injury has been characterized extensively, and is dependent on glycoprotein Ib (GPIb). Stable thrombus formation in veins, not venules has not been characterized extensively. Here, we compare the requirements for stable thrombus formation in response to FeCl3-induced injury in mouse CA with those for stable thrombus formation induced by FeCl3 in mouse inferior vena cava (IVC). The structural differences between the CA and the IVC preclude equivalent preparation of the two types of vessels. The tissue surrounding the CA can be separated from the vessel without obviously damaging it, allowing easy access by the FeCl3. The tissue surrounding the IVC cannot be readily separated from the vessel without damaging it. So, the vessel preparations are not equivalent. Stable thrombus formation was monitored using a laser Doppler system. Stable thrombus formation in C57BL/6J mice occurred in the CA in about 5 minutes in response to injury induced by exposure to FeCl3 (10%, 3 min) and was dependent on GPIb. Strikingly, stable thrombus formation in the IVC did not occur reproducibly in response to 10% FeCl3 even following exposure for 10 minutes. Exposure to a 20% FeCl3 solution for 10 minutes was required to reproducibly elicit stable thrombus formation in the IVC of control mice; stable thrombi formed in about 28 minutes. Dependence of stable thrombus formation in the IVC on GPIb in response to FeCl3 induced injury was characterized using genetically altered mice. GPIb−/− mice did not support stable thrombus formation (20%, 10 min). Because the low platelet count and/or the large platelet size of the platelets in these Bernard-Soulier syndrome like mice may have affected thrombus formation, mice lacking the extracellular domain of GPIb, but possessing the transmembrane and cytoplasmic domains of GPIb were tested in this system. These mice designated IL-4R, have platelets of normal size and number but lack murine GPIb. They express modified human GPIb composed of the transmembrane and cytoplasmic domains of human GPIb and the extracellular domain of interleukin 4 receptor (IL-4R) instead of the extracellular domain of human GPIb. Both mouse strains, GPIb−/− and the IL-4R, are present in a C57BL/6J background as a result of 10 generation backcrossing to C57BL/6J animals. Stable thrombi did not form in these mice in response to FeCl3. These data demonstrate that as in the CA, stable thrombus formation in the IVC requires GPIb. Surprisingly, these results conflict with those reported for FeCl3-induced stable thrombus formation in mesenteric venules which is GPIb-independent, but von Willebrand factor-dependent.


Sign in / Sign up

Export Citation Format

Share Document