Mercuric chloride uncouples glutamate uptake from the countertransport of hydroxyl equivalents

1996 ◽  
Vol 271 (5) ◽  
pp. C1487-C1493 ◽  
Author(s):  
T. N. Nagaraja ◽  
N. Brookes

The cotransport of sodium and glutamate by system X(AG)- is believed to be coupled to the countertransport of potassium and hydroxyl ion equivalents. Accordingly, the uptake of glutamate or D-aspartate in astrocytes is accompanied by an intracellular acidification. Here, we report that HgCl2 blocks the glutamate-induced acidification with an approximate 50% inhibitor concentration (IC50) of 55 nM, an order of magnitude below its IC50 for inhibition of glutamate uptake. At 100 nM HgCl2, glutamate-induced acidification was abolished, whereas glutamate uptake was unaffected. D-Aspartate-induced acidification was equally sensitive to HgCl2, indicating that HgCl2 blocked a transporter-mediated, rather than a receptor-mediated, acidification. Unaltered responses to acute acid and alkaline loads showed that HgCl2 was not acting indirectly via a change in pH regulation. We conclude that HgCl2 acted directly on the glutamate transporter to uncouple the uptake of glutamate from the export of hydroxyl equivalents. In contrast, two other sulfhydryl reagents, p-chloromercuribenzensulfonate and N-ethylmaleimide, failed to discriminate between glutamate-induced acidification and glutamate uptake. An additional effect of > or = 100 nM HgCl2, in this case shared by p-chlormercuribenzenesulfonate, was transient intracellular acidification. There is evidence that glutamate transport is regulated by intracellular pH. Mercuric mercury may disrupt the regulation of glutamate transport at lower concentrations than those that block transport.

2007 ◽  
Vol 27 (7) ◽  
pp. 1327-1338 ◽  
Author(s):  
Cristina Romera ◽  
Olivia Hurtado ◽  
Judith Mallolas ◽  
Marta P Pereira ◽  
Jesús R Morales ◽  
...  

Excessive levels of extracellular glutamate in the nervous system are excitotoxic and lead to neuronal death. Glutamate transport, mainly by glutamate transporter GLT1/EAAT2, is the only mechanism for maintaining extracellular glutamate concentrations below excitotoxic levels in the central nervous system. We recently showed that neuroprotection after experimental ischemic preconditioning (IPC) involves, at least partly, the upregulation of the GLT1/EAAT2 glutamate transporter in astrocytes, but the mechanisms were unknown. Thus, we decided to explore whether activation of the nuclear receptor peroxisome proliferator-activated receptor (PPAR)γ, known for its antidiabetic and antiinflammatory properties, is involved in glutamate transport. First, we found that the PPARγ antagonist T0070907 inhibits both IPC-induced tolerance and reduction of glutamate release after lethal oxygen-glucose deprivation (OGD) (70.1% ± 3.4% versus 97.7% ± 5.2% of OGD-induced lactate dehydrogenase (LDH) release and 61.8% ± 5.9% versus 85.9% ± 7.9% of OGD-induced glutamate release in IPC and IPC + T0070907 1 μmol/L, respectively, n = 6 to 12, P < 0.05), as well as IPC-induced astrocytic GLT-1 overexpression. IPC also caused an increase in nuclear PPARγ transcriptional activity in neurons and astrocytes (122.1% ± 8.1% and 158.6% ± 22.6% of control PPARγ transcriptional activity, n = 6, P < 0.05). Second, the PPARγ agonist rosiglitazone increased both GLT-1/EAAT2 mRNA and protein expression and [3H]glutamate uptake, and reduced OGD-induced cell death and glutamate release (76.3% ± 7.9% and 65.5% ± 15.1% of OGD-induced LDH and glutamate release in rosiglitazone 1 μmol/l, respectively, n = 6 to 12, P < 0.05). Finally, we have identified six putative PPAR response elements (PPREs) in the GLT1/EAAT2 promoter and, consistently, rosiglitazone increased fourfold GLT1/EAAT2 promoter activity. All these data show that the GLT1/EAAT2 glutamate transporter is a target gene of PPARγ leading to neuroprotection by increasing glutamate uptake.


2001 ◽  
Vol 86 (2) ◽  
pp. 836-844 ◽  
Author(s):  
Dominic Mort ◽  
Païkan Marcaggi ◽  
James Grant ◽  
David Attwell

A rise of brain ammonia level, as occurs in liver failure, initially increases glutamate accumulation in neurons and glial cells. We investigated the effect of acute exposure to ammonia on glutamate transporter currents in whole cell clamped glial cells from the salamander retina. Ammonia potentiated the current evoked by a saturating concentration ofl-glutamate, and decreased the apparent affinity of the transporter for glutamate. The potentiation had a Michaelis-Menten dependence on ammonia concentration, with a K m of 1.4 mM and a maximum potentiation of 31%. Ammonia also potentiated the transporter current produced by d-aspartate. Potentiation of the glutamate transport current was seen even with glutamine synthetase inhibited, so ammonia does not act by speeding glutamine synthesis, contrary to a suggestion in the literature. The potentiation was unchanged in the absence of Cl− ions, showing that it is not an effect on the anion current gated by the glutamate transporter. Ammonium ions were unable to substitute for Na+in driving glutamate transport. Although they can partially substitute for K+ at the cation counter-transport site of the transporter, their occupancy of these sites would produce a potentiation of <1%. Ammonium, and the weak bases methylamine and trimethylamine, increased the intracellular pH by similar amounts, and intracellular alkalinization is known to increase glutamate uptake. Methylamine and trimethylamine potentiated the uptake current by the amount expected from the known pH dependence of uptake, but ammonia gave a potentiation that was larger than could be explained by the pH change, and some potentiation of uptake by ammonia was still seen when the internal pH was 8.8, at which pH further alkalinization does not increase uptake. These data suggest that ammonia speeds glutamate uptake both by increasing cytoplasmic pH and by a separate effect on the glutamate transporter. Approximately two-thirds of the speeding is due to the pH change.


2012 ◽  
Vol 302 (6) ◽  
pp. C880-C891 ◽  
Author(s):  
Rikke Søgaard ◽  
Ivana Novak ◽  
Nanna MacAulay

Increased ammonium (NH4+/NH3) in the brain is a significant factor in the pathophysiology of hepatic encephalopathy, which involves altered glutamatergic neurotransmission. In glial cell cultures and brain slices, glutamate uptake either decreases or increases following acute ammonium exposure but the factors responsible for the opposing effects are unknown. Excitatory amino acid transporter isoforms EAAT1, EAAT2, and EAAT3 were expressed in Xenopus oocytes to study effects of ammonium exposure on their individual function. Ammonium increased EAAT1- and EAAT3-mediated [3H]glutamate uptake and glutamate transport currents but had no effect on EAAT2. The maximal EAAT3-mediated glutamate transport current was increased but the apparent affinities for glutamate and Na+ were unaltered. Ammonium did not affect EAAT3-mediated transient currents, indicating that EAAT3 surface expression was not enhanced. The ammonium-induced stimulation of EAAT3 increased with increasing extracellular pH, suggesting that the gaseous form NH3 mediates the effect. An ammonium-induced intracellular alkalinization was excluded as the cause of the enhanced EAAT3 activity because 1) ammonium acidified the oocyte cytoplasm, 2) intracellular pH buffering with MOPS did not reduce the stimulation, and 3) ammonium enhanced pH-independent cysteine transport. Our data suggest that the ammonium-elicited uptake stimulation is not caused by intracellular alkalinization or changes in the concentrations of cotransported ions but may be due to a direct effect on EAAT1/EAAT3. We predict that EAAT isoform-specific effects of ammonium combined with cell-specific differences in EAAT isoform expression may explain the conflicting reports on ammonium-induced changes in glial glutamate uptake.


1999 ◽  
Vol 181 (10) ◽  
pp. 3172-3177 ◽  
Author(s):  
Catherine J. Peddie ◽  
Gregory M. Cook ◽  
Hugh W. Morgan

ABSTRACT A strain of Bacillus designated TA2.A1, isolated from a thermal spring in Te Aroha, New Zealand, grew optimally at pH 9.2 and 70°C. Bacillus strain TA2.A1 utilized glutamate as a sole carbon and energy source for growth, and sodium chloride (>5 mM) was an obligate requirement for growth. Growth on glutamate was inhibited by monensin and amiloride, both inhibitors that collapse the sodium gradient (ΔpNa) across the cell membrane.N,N-Dicyclohexylcarbodiimide inhibited the growth of Bacillus strain TA2.A1, suggesting that an F1F0-ATPase (H type) was being used to generate cellular ATP needed for anabolic reactions. Vanadate, an inhibitor of V-type ATPases, did not affect the growth of Bacillusstrain TA2.A1. Glutamate transport by Bacillus strain TA2.A1 could be driven by an artificial membrane potential (ΔΨ), but only when sodium was present. In the absence of sodium, the rate of ΔΨ-driven glutamate uptake was fourfold lower. No glutamate transport was observed in the presence of ΔpNa alone (i.e., no ΔΨ). Glutamate uptake was specifically inhibited by monensin, and the Km for sodium was 5.6 mM. The Hill plot had a slope of approximately 1, suggesting that sodium binding was noncooperative and that the glutamate transporter had a single binding site for sodium. Glutamate transport was not affected by the protonophore carbonyl cyanide m-chlorophenylhydrazone, suggesting that the transmembrane pH gradient was not required for glutamate transport. The rate of glutamate transport increased with increasing glutamate concentration; the Km for glutamate was 2.90 μM, and the V max was 0.7 nmol · min−1 mg of protein. Glutamate transport was specifically inhibited by glutamate analogues.


2011 ◽  
Vol 300 (6) ◽  
pp. F1353-F1359 ◽  
Author(s):  
M. Yang ◽  
K. Roman ◽  
D.-F. Chen ◽  
Z.-G. Wang ◽  
Y. Lin ◽  
...  

Glutamatergic pathways mediate transmission of pain. Strategies to reduce glutamatergic neurotransmission may have beneficial effects to mitigate nociception. Recent work revealed that overexpression of the astrocytic glutamate transporter (GLT-1) by transgenic or pharmacologic approaches produced a diminished visceral nociceptive response to colonic distension. The purpose of this study was to determine the effect of GLT-1 overexpression on the visceromotor response to bladder distension. Increased glutamate uptake activity produced by 1-wk ceftriaxone (CTX) treatment attenuated 60–64% the visceromotor response to graded bladder distension compared with vehicle-treated mice. One-hour pretreatment with selective GLT-1 antagonist dihydrokainate reversed the blunted visceromotor response to bladder distension produced by 1-wk CTX, suggesting that GLT-1 overexpression mediated the analgesic effect of CTX. Moreover, sensitization of the visceromotor response to bladder distension produced by local bladder irritation (acrolein) was also attenuated by 1-wk CTX treatment. A model of cross-organ sensitization of bladder visceromotor response to distension was next studied to determine whether increased expression of GLT-1 can mitigate colon to bladder sensitization. Intracolonic trinitrobenzene sulfonic acid (TNBS) administered 1 h before eliciting the visceromotor response to graded bladder distension produced a 75–138% increase in visceromotor response compared with animals receiving intracolonic vehicle. In marked contrast, animals treated with 1-wk CTX + intracolonic TNBS showed no enhanced visceromotor response compared with the 1-wk vehicle + intracolonic vehicle group. The study suggests that GLT-1 overexpression attenuates the visceromotor response to bladder distension and both local irritant-induced and cross-organ-sensitized visceromotor response to bladder distension.


PLoS ONE ◽  
2013 ◽  
Vol 8 (8) ◽  
pp. e69250 ◽  
Author(s):  
Rossella Russo ◽  
Federica Cavaliere ◽  
Giuseppe Pasquale Varano ◽  
Marco Milanese ◽  
Annagrazia Adornetto ◽  
...  

2009 ◽  
Vol 77 (9) ◽  
pp. 3578-3587 ◽  
Author(s):  
Roberta Colicchio ◽  
Susanna Ricci ◽  
Florentia Lamberti ◽  
Caterina Pagliarulo ◽  
Chiara Pagliuca ◽  
...  

ABSTRACT Experimental animal models of bacterial meningitis are useful to study the host-pathogen interactions occurring at the cerebral level and to analyze the pathogenetic mechanisms behind this life-threatening disease. In this study, we have developed a mouse model of meningococcal meningitis based on the intracisternal inoculation of bacteria. Experiments were performed with mouse-passaged serogroup C Neisseria meningitidis. Survival and clinical parameters of infected mice and microbiological and histological analysis of the brain demonstrated the establishment of meningitis with features comparable to those of the disease in humans. When using low bacterial inocula, meningococcal replication in the brain was very efficient, with a 1,000-fold increase of viable counts in 18 h. Meningococci were also found in the blood, spleens, and livers of infected mice, and bacterial loads in different organs were dependent on the infectious dose. As glutamate uptake from the host has been implicated in meningococcal virulence, mice were infected intracisternally with an isogenic strain deficient in the ABC-type l-glutamate transporter GltT. Noticeably, the mutant was attenuated in virulence in mixed infections, indicating that wild-type bacteria outcompeted the GltT-deficient meningococci. The data show that the GltT transporter plays a role in meningitis and concomitant systemic infection, suggesting that meningococci may use l-glutamate as a nutrient source and as a precursor to synthesize the antioxidant glutathione.


1989 ◽  
Vol 257 (1) ◽  
pp. R180-R188
Author(s):  
P. M. Romano ◽  
G. A. Ahearn ◽  
C. Storelli

L-[3H]glutamate uptake into eel (Anguilla anguilla) intestinal brush-border membrane vesicles (BBMV) was a sigmoidal function of extravesicular Na, suggesting that two or more cations accompanied the amino acid during transport. L-[3H]glutamate influx illustrated the following kinetic constants: apparent membrane binding affinity (Kapp) = 0.80 +/- 0.12 mM; influx velocity (Jmax) = 2.61 +/- 0.31 nmol.mg protein-1.min-1; and permeability coefficient (P) = 0.65 +/- 0.10 microliters.mg protein-1. min-1. Results from the imposition of diffusion potentials across vesicle membranes using K-valinomycin or H-carbonyl-cyanide p-chloromethoxyphenylhydrazone suggested that Na-dependent L-glutamate transport was sensitive to transmembrane electrical potential difference. Extravesicular aspartate was a competitive inhibitor of L-[3H]glutamate influx [inhibitory constant (Ki) = 0.28 +/- 0.04 mM]. Intravesicular K and extravesicular Cl ions enhanced maximal amino acid influx and transient L-glutamate accumulation against a concentration gradient (overshoot). Intravesicular K reduced the Kapp of the membrane to L-glutamate, whereas extravesicular Cl increased L-glutamate Jmax. A model for L-[3H]glutamate transport is suggested involving the cotransport of at least two Na and one L-glutamate that is activated by one intravesicular K ion and at least two extravesicular Cl ions.


Sign in / Sign up

Export Citation Format

Share Document