Changes in intracellular Ca2+concentration induced by L-type Ca2+ channel current in guinea pig gastric myocytes

1997 ◽  
Vol 273 (6) ◽  
pp. C1947-C1956 ◽  
Author(s):  
Sung Joon Kim ◽  
Seung Cheol Ahn ◽  
Jin Kyung Kim ◽  
Young Chul Kim ◽  
Insuk So ◽  
...  

We investigated the relationship between voltage-operated Ca2+ channel current and the corresponding intracellular Ca2+concentration ([Ca2+]i) change (Ca2+ transient) in guinea pig gastric myocytes. Fluorescence microspectroscopy was combined with conventional whole cell patch-clamp technique, and fura 2 (80 μM) was added to CsCl-rich pipette solution. Step depolarization to 0 mV induced inward Ca2+ current ( I Ca) and concomitantly raised [Ca2+]i. Both responses were suppressed by nicardipine, an L-type Ca2+ channel blocker, and the voltage dependence of Ca2+transient was similar to the current-voltage relation of I Ca. When pulse duration was increased by up to 900 ms, peak Ca2+ transient increased and reached a steady state when stimulation was for longer. The calculated fast Ca2+ buffering capacity ( B value), determined as the ratio of the time integral of I Ca divided by the amplitude of Ca2+ transient, was not significantly increased after depletion of Ca2+ stores by the cyclic application of caffeine (10 mM) in the presence of ryanodine (4 μM). The addition of cyclopiazonic acid (CPA, 10 μM), a sarco(endo)plasmic reticulum Ca2+-ATPase inhibitor, decreased B value by ∼20% in a reversible manner. When KCl pipette solution was used, Ca2+-activated K+ current [ I K(Ca)] was also recorded during step depolarization. CPA sensitively suppressed the initial peak and oscillations of I K(Ca) with irregular effects on Ca2+transients. The above results suggest that, in guinea pig gastric myocyte, Ca2+ transient is tightly coupled to I Caduring depolarization, and global [Ca2+]iis not significantly affected by Ca2+-induced Ca2+ release from sarcoplasmic reticulum during depolarization.

2008 ◽  
pp. 55-62
Author(s):  
HY Xu ◽  
X Huang ◽  
M Yang ◽  
J-B Sun ◽  
L-H Piao ◽  
...  

C-type natriuretic peptides (CNP) play an inhibitory role in smooth muscle motility of the gastrointestinal tract, but the effect of CNP on delayed rectifier potassium currents is still unclear. This study was designed to investigate the effect of CNP on delayed rectifier potassium currents and its mechanism by using conventional whole-cell patch-clamp technique in guinea-pig gastric myocytes isolated by collagenase. CNP significantly inhibited delayed rectifier potassium currents [I(K (V))] in dose-dependent manner, and CNP inhibited the peak current elicited by depolarized step pulse to 86.1+/-1.6 % (n=7, P<0.05), 78.4+/-2.6 % (n=10, P<0.01) and 67.7+/-2.3 % (n=14, P<0.01), at concentrations of 0.01 micromol/l, 0.1 micromol/l and 1 micromol/l, respectively, at +60 mV. When the cells were preincubated with 0.1 micromol/l LY83583, a guanylate cyclase inhibitor, the 1 ?micromol/l CNP-induced inhibition of I(K (V)) was significantly impaired but when the cells were preincubated with 0.1 micromol/l zaprinast, a cGMP-sensitive phosphodiesterase inhibitor, the 0.01 micromol/l CNP-induced inhibition of I(K (V)) was significantly potentiated. 8-Br-cGMP, a membrane permeable cGMP analogue mimicked inhibitory effect of CNP on I(K (V)). CNP-induced inhibition of I(K (V)) was completely blocked by KT5823, an inhibitor of cGMP-dependent protein kinase (PKG). The results suggest that CNP inhibits the delayed rectifier potassium currents via cGMP-PKG signal pathway in the gastric antral circular myocytes of the guinea-pig.


1990 ◽  
Vol 258 (2) ◽  
pp. H452-H459 ◽  
Author(s):  
N. Shepherd ◽  
M. Vornanen ◽  
G. Isenberg

We describe the first observations of isolated mammalian guinea pig ventricular myocytes that combine measurements of contractile force with the voltage-clamp method. The myocytes were attached by poly-L-lysine to the beveled ends of a pair of thin glass rods having a compliance of 0.76 m/N. The contractile force of a cell caused a 1- to 3-microm displacement of the rods; the motion of which was converted to an output voltage by phototransistors. By the use of the whole cell patch-clamp technique, the cells were depolarized at 1 Hz with 200-ms-long clamp pulses from -45 to +5 mV (35 degrees C, 3.6 mM CaCl2). Isometric force began after a latency of 7 +/- 2 ms, peaked at 93 +/- 21 ms, and relaxed (90%) at 235 +/- 63 ms. The time course of force was always faster than that of isotonic shortening (time to peak 154 +/- 18 ms). With 400-ms-long depolarizations, a tonic component was recorded as either sustained force or sustained shortening that decayed on repolarization. Substitution of Ca by Sr in the bath increased the inward current through Ca channels but slowed down the time course of force development. The results are consistent with the hypothesis that activator calcium derives mainly from internal stores and that Ca release needs Ca entry through channels.


1998 ◽  
Vol 275 (1) ◽  
pp. C293-C302 ◽  
Author(s):  
Lisa M. Middleton ◽  
Robert D. Harvey

The role of protein kinase C (PKC) in regulating the protein kinase A (PKA)-activated Cl− current conducted by the cardiac isoform of the cystic fibrosis transmembrane conductance regulator (cCFTR) was studied in guinea pig ventricular myocytes using the whole cell patch-clamp technique. Although stimulation of endogenous PKC with phorbol 12,13-dibutyrate (PDBu) alone did not activate this Cl− current, even when intracellular dialysis was limited with the perforated patch-clamp technique, activation of PKC did elicit a significant response in the presence of PKA-dependent activation of the current by the β-adrenergic receptor agonist isoproterenol. PDBu increased the magnitude of the Cl− conductance activated by a supramaximally stimulating concentration of isoproterenol by 21 ± 3.3% ( n = 9) when added after isoproterenol and by 36 ± 16% ( n= 14) when introduced before isoproterenol. 4α-Phorbol 12,13-didecanoate, a phorbol ester that does not activate PKC, did not mimic these effects. Preexposure to chelerythrine or bisindolylmaleimide, two highly selective inhibitors of PKC, significantly reduced the magnitude of the isoproterenol-activated Cl− current by 79 ± 7.7% ( n = 11) and 52 ± 10% ( n = 8), respectively. Our results suggest that although acute activation of endogenous PKC alone does not significantly regulate cCFTR Cl− channel activity in native myocytes, it does potentiate PKA-dependent responses, perhaps most dramatically demonstrated by basal PKC activity, which may play a pivotal role in modulating the function of these channels.


1994 ◽  
Vol 302 (1) ◽  
pp. 147-154 ◽  
Author(s):  
E J Nelson ◽  
C C R Li ◽  
R Bangalore ◽  
T Benson ◽  
R S Kass ◽  
...  

Thapsigargin (TG), 2,5-t-butylhydroquinone (tBHQ) and cyclopiazonic acid (CPA) all inhibit the initial Ca(2+)-response to thyrotropin-releasing hormone (TRH) by depleting intracellular Ca2+ pools sensitive to inositol 1,4,5-trisphosphate (IP3). Treatment of GH3 pituitary cells for 30 min with 5 nM TG, 500 nM tBHQ or 50 nM CPA completely eliminated the TRH-induced spike in intracellular free Ca2+ ([Ca2+]i). Higher concentrations of TG and tBHQ, but not CPA, were also found to inhibit strongly the activity of L-type calcium channels, as measured by the increase in [Ca2+]i or 45Ca2+ influx stimulated by depolarization. TG and tBHQ blocked high-K(+)-stimulated 45Ca2+ uptake, with IC50 values of 10 and 1 microM respectively. Maximal inhibition of L-channel activity was achieved 15-30 min after drug addition. Inhibition by tBHQ was reversible, whereas inhibition by TG was not. TG and CPA did not affect spontaneous [Ca2+]i oscillations when tested at concentrations adequate to deplete the IP3-sensitive Ca2+ pool. However, 20 microM TG and 10 microM tBHQ blocked [Ca2+]i oscillations completely. The effect of drugs on calcium currents was measured directly by using the patch-clamp technique. When added to the external bath, 10 microM CPA caused a sustained increase in the calcium-channel current amplitude over 8 min, 10 microM tBHQ caused a progressive inhibition, and 10 microM TG caused an enhancement followed by a sustained block of the calcium current over 8 min. In summary, CPA depletes IP3-sensitive Ca2+ stores and does not inhibit voltage-operated calcium channels. At sufficiently low concentrations, TG depletes IP3-sensitive stores without inhibiting L-channel activity, but, for tBHQ, inhibition of calcium channels occurs at concentrations close to those needed to block agonist mobilization of intracellular Ca2+.


1995 ◽  
Vol 269 (1) ◽  
pp. C48-C54 ◽  
Author(s):  
S. Nakayama ◽  
A. F. Brading

The whole cell patch-clamp technique was used to measure Ca2+ current in isolated smooth muscle cells from guinea pig urinary bladder. Noniactivating Ca2+ channel current was modeled incorporating the long open state of the Ca2+ channel. When inactivation was examined over a wide voltage range, a completely U-shaped curve was obtained. Lack of inactivation at +80 mV could be attributed to the long open state induced by large depolarization as well as to minimal Ca2+ influx and Ca(2+)-dependent inactivation. Activation parameters were obtained by comparing the amplitudes of conditioned (by +80 mV, 5 s) and unconditioned test potentials. With the use of the activation curve and the U-shaped inactivation curve, a noninactivating current that peaks around +20 mV was obtained. This current is composed of a so-called “window” current and a persistent current brought about by the long open state. Differences in the voltage dependence of the development of the long open state in various smooth muscles, as well as differences in the equilibrium constant between open and inactivated states, could underlie the different patterns of contractile behavior that characterize smooth muscles.


1995 ◽  
Vol 269 (1) ◽  
pp. C156-C162 ◽  
Author(s):  
T. Nakahari ◽  
Y. Marunaka

The whole cell patch-clamp technique was used to study ionic conductances in fetal distal lung epithelial (FDLE) cells. In unstimulated FDLE cells, K+ conductances were detected in lowered intracellular Cl- concentration ([Cl-]i, < or = 50 mM). The whole cell currents of FDLE cells were increased by elevation of intracellular Ca2+ concentration ([Ca2+]i) or intracellular adenosine 3',5'-cyclic monophosphate (cAMP) concentration ([cAMP]i). The elevation of [Ca2+]i activated the K+ currents. The amiloride-blockable whole cell currents were activated by [cAMP]i of 1 mM with [Cl-]i of 20 mM and were more frequently detected in the pipette solution without ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) than with it (0.5 mM). When the [Cl-]i was fixed at 50 or 145 mM, however, the increase in these currents was not detected even with cAMP and without EGTA. The amiloride-blockable currents were detected in both the Na+ and K+ pipette solutions. Thus the increase in amiloride-blockable whole cell currents was due to the activation of nonselective cation channels. In FDLE cells treated with terbutaline, which is a beta 2-adrenergic receptor agonist, or forskolin, these currents were detected in the pipette solution containing 20 mM Cl- but were suppressed with time when the pipette solution contained 50 or 145 mM Cl-. It seems likely that maintenance of [Cl-]i at the lowered level is an important requirement for the FDLE cells to activate the amiloride-blockable whole cell currents. It is proposed that cellular mechanisms, such as cell shrinkage, exist to reduce the [Cl-]i in response to cAMP.


1995 ◽  
Vol 268 (1) ◽  
pp. C162-C170 ◽  
Author(s):  
R. Inoue ◽  
Y. Waniishi ◽  
Y. Ito

The effects of external H+ on the acetylcholine-induced inward current (nonselective cationic current; InsACh) in guinea pig ileal smooth muscle were investigated using the conventional whole cell patch-clamp technique. When the external pH (pHo) was lowered, the amplitude of InsACh was increased, with no significant change in the reversal potential or no detectable induction of other ionic permeabilities. The dose-response curve for this effect was best described by a Hill-type equation with an apparent pKa value of 7.4 and a Hill coefficient of approximately 1. The effect of pHo was associated with a shift of the steady-state activation curve for InsACh; the half-maximum activation potential became more negative on lowering pHo. Similar results were obtained when InsACh was activated by intracellularly applied guanosine 5'-O-(3-thiotriphosphate). These results indicate that the external H+ activity is an efficient regulator of InsACh channel, and this may have a physiological importance for controlling the muscarinic receptor-mediated contractions in this muscle.


1994 ◽  
Vol 267 (6) ◽  
pp. H2420-H2429
Author(s):  
D. Wang ◽  
L. Belardinelli

The ionic basis of the negative inotropic effect of adenosine on guinea pig atrial myocytes was studied. Membrane potentials and currents were measured using a whole cell patch-clamp technique. The contractility was assessed by video quantitation of cell twitch amplitude. Adenosine shortened action potential duration [measured at 90% repolarization (APD90)] and decreased twitch amplitude in a concentration-dependent manner. The maximal effects of adenosine (100 microM) were to reduce APD90 from 102 +/- 14 to 34 +/- 8 ms (n = 11) and twitch amplitude from 4.3 +/- 0.9 to 1.5 +/- 0.4 microns (n = 8). The concentration of adenosine that caused one-half of the maximal reductions of twitch amplitude and of APD90 was 0.6 microM. Reductions in APD90 and in twitch amplitude were parallel and highly correlated (r = 0.98). Decreases in twitch amplitude by adenosine could be mimicked by application of voltage-clamp pulses with durations similar to the durations of action potentials in the presence of adenosine. Clamp pulse could reverse adenosine-induced but not cadmium chloride-induced decreases in twitch amplitude. Adenosine activated the inwardly rectifying K+ current (IK,Ado), but did not significantly decrease the L-type Ca2+ current (ICa,L). Adenosine reduced the effects of BAY K 8644 on APD90 and twitch amplitude but did not attenuate the BAY K-induced increase in ICa,L. The effects of adenosine on APD90 and twitch amplitude could be reversed after activation of IK,Ado was inhibited by intracellular application of cesium and tetraethylammonium chloride.(ABSTRACT TRUNCATED AT 250 WORDS)


2013 ◽  
Vol 41 (05) ◽  
pp. 1043-1051 ◽  
Author(s):  
Hua Yin ◽  
Dong Hyu Cho ◽  
Soo Joung Park ◽  
Seong Kyu Han

The plant Withania somnifera (WS), also known as Ashwagandha, has been used widely in traditional medicine systems in India and Nepal (Ayurveda), and has been accepted to cure various ailments. In this study, the whole-cell patch clamp technique was performed to examine the mechanism of action of WS on the SG neurons of the Vc from mouse brainstem slices. In whole-cell patch clamp mode, methanol extract of Withania somnifera (mWS) induced short-lived and repeatable inward currents in all SG neurons tested (31.3±8.51 pA, n = 7) using a high chloride pipette solution. The mWS-induced inward currents were concentration dependent and maintained in the presence of tetrodotoxin (TTX), a voltage gated Na + channel blocker, CNQX, a non-NMDA glutamate receptor antagonist, AP5, an NMDA receptor antagonist and strychnine, a glycine receptor antagonist. The mWS induced currents were blocked by picrotoxin, a GABAA receptor antagonist. These results show that mWS has an inhibitory effects on SG neurons of the Vc through GABAA receptor-mediated activation of chloride ion channels, indicating that mWS contains compounds with sedative effects on the central nervous system. These results also suggest that mWS may be a potential target for modulating orofacial pain processing.


Sign in / Sign up

Export Citation Format

Share Document