Cl− currents activated via purinergic receptors inXenopus follicles

1998 ◽  
Vol 274 (2) ◽  
pp. C333-C340 ◽  
Author(s):  
Rogelio O. Arellano ◽  
Edith Garay ◽  
Ricardo Miledi

Ionic currents elicited via purinergic receptors located in the membrane of Xenopus follicles were studied using electrophysiological techniques. Follicles responded to ATP-activating inward currents with a fast time course ( F in). In Ringer solution, reversal potential ( E rev) of F in was −22 mV, which did not change with external substitutions of Na+ or K+, whereas solutions containing 50 or 5% of normal Cl−concentration shifted E rev to about +4 and +60 mV, respectively, and decreased F in amplitude, indicating that F in was carried by Cl−. F in had an onset delay of ∼400 ms, measured by application of a brief jet of ATP from a micropipette positioned near the follicle (50 μm). F in was inhibited by 50% in follicles pretreated with pertussis toxin. This suggests a G protein-mediated receptor channel pathway. F in was mimicked by 2-MeSATP and UTP, the potency order (half-maximal effective concentration) was 2-MeSATP (194 nM) > UTP (454 nM) > ATP (1,086 nM). All agonists generated Cl− currents and displayed cross-inhibition on the others. F in activation by acetylcholine also cross-inhibited F in-ATP responses, suggesting that all act on a common channel-activation pathway.

1994 ◽  
Vol 72 (3) ◽  
pp. 1109-1126 ◽  
Author(s):  
D. Golomb ◽  
X. J. Wang ◽  
J. Rinzel

1. We address the hypothesis of Steriade and colleagues that the thalamic reticular nucleus (RE) is a pacemaker for thalamocortical spindle oscillations by developing and analyzing a model of a large population of all-to-all coupled inhibitory RE neurons. 2. Each RE neuron has three ionic currents: a low-threshold T-type Ca2+ current (ICa-T), a calcium-activated potassium current (IAHP) and a leakage current (IL). ICa-T underlies a cell's postinhibitory rebound properties, whereas IAHP hyperpolarizes the neuron after a burst. Each neuron, which is a conditional oscillator, is coupled to all other RE neurons via fast gamma-aminobutyric acid-A (GABAA) and slow GABAB synapses. 3. For generating network oscillations IAHP may not be necessary. Synaptic inhibition can provide the hyperpolarization for deinactivating ICa-T that causes bursting if the reversal potentials for GABAA and GABAB synapses are sufficiently negative. 4. If model neurons display sufficiently powerful rebound excitability, an isolated RE network of such neurons oscillates with partial but typically not full synchrony. The neurons spontaneously segregate themselves into several macroscopic clusters. The neurons within a cluster follow the same time course, but the clusters oscillate differently from one another. In addition to activity patterns in which clusters burst sequentially (e.g., 2 or 3 clusters bursting alternately), a two-cluster state may occur with one cluster active and one quiescent. Because the neurons are all-to-all coupled, the cluster states do not have any spatial structure. 5. We have explored the sensitivity of such partially synchronized patterns to heterogeneity in cells' intrinsic properties and to simulated neuroelectric noise. Although either precludes precise clustering, modest levels of heterogeneity or noise lead to approximate clustering of active cells. The population-averaged voltage may oscillate almost regularly but individual cells burst at nearly every second cycle or less frequently. The active-quiescent state is not robust at all to heterogeneity or noise. Total asynchrony is observed when heterogeneity or noise is too large, e.g., even at 25% heterogeneity for our reference set of parameter values. 6. The fast GABAA inhibition (with a reversal potential more negative than, say, -65 mV) favors the cluster states and prevents full synchrony. Our simulation results suggest two mechanisms that can fully synchronize the isolated RE network model. With GABAA removed or almost totally blocked, GABAB inhibition (because it is slow) can lead to full synchrony, which is partially robust to heterogeneity and noise.(ABSTRACT TRUNCATED AT 400 WORDS)


1999 ◽  
Vol 81 (1) ◽  
pp. 1-14 ◽  
Author(s):  
M. Cayre ◽  
S. D. Buckingham ◽  
S. Yagodin ◽  
D. B. Sattelle

Cayre, M., S. D. Buckingham, S. Yagodin, and D. B. Sattelle. Cultured insect mushroom body neurons express functional receptors for acetylcholine, GABA, glutamate, octopamine, and dopamine. J. Neurophysiol. 81: 1–14, 1999. Fluorescence calcium imaging with fura-2 and whole cell, patch-clamp electrophysiology was applied to cultured Kenyon cells (interneurons) isolated from the mushroom bodies of adult crickets ( Acheta domesticus) to demonstrate the presence of functional neurotransmitter receptors. In all cells investigated, 5 μM acetylcholine (ACh, n = 52) evoked an increase in intracellular free calcium ([Ca2+]i). Similar effects were observed in response to 10 μM nicotine. The ACh response was insensitive to atropine (50 μM) but was reduced by mecamylamine (50 μM) and α-bungarotoxin (α-bgt, 10 μM). ACh-induced inward ion currents ( n = 28, E ACh ∼0 mV) were also blocked by 1 μM mecamylamine and by 1 μM α-bgt. Nicotine-induced inward currents desensitized more rapidly than ACh responses. Thus functional α-bgt–sensitive nicotinic ACh receptors are abundant on all Kenyon cells tested, and their activation leads to an increase in [Ca2+]i. γ-Aminobutyric acid (GABA, 100 μM) triggered a sustained decrease in [Ca2+]i. Similar responses were seen with a GABAA agonist, muscimol (100 μM), and a GABAB agonist, 3-APPA (1 mM), suggesting that more than one type of GABA receptor can affect [Ca2+]i. This action of GABA was not observed when the extracellular KCl concentration was lowered. All cells tested ( n = 26) with patch-clamp electrophysiology showed picrotoxinin (PTX)-sensitive, GABA-induced (30–100 μM) currents with a chloride-sensitive reversal potential. Thus, an ionotropic PTX-sensitive GABA receptor was found on all Kenyon cells tested. Most (61%) of the 54 cells studied responded to l-glutamate (100 μM) application either with a biphasic increase in [Ca2+]i or with a single, delayed, sustained [Ca2+]i increase. Nearly all cells tested (95%, n = 19) responded to (100 μM) l-glutamate with rapidly desensitizing, inward currents that reversed at approximately −30 mV. Dopamine (100 μM) elicited either a rapid or a delayed increase in [Ca2+]i in 63% of the 26 cells tested. The time course of these responses varied greatly among cells. Dopamine failed to elicit currents in patch-clamped cells ( n = 4). A brief decrease in [Ca2+]i was induced by octopamine (100 μM) in ∼54% of the cells tested ( n = 35). However, when extracellular CaCl2 was lowered, octopamine triggered a substantial increase in [Ca2+]i in 35% of the cells tested ( n = 26). No octopamine-elicited currents were detected in patched-clamped cells ( n = 10).


1995 ◽  
Vol 198 (7) ◽  
pp. 1483-1492 ◽  
Author(s):  
A Chrachri

Ionic currents from freshly isolated and identified swimmeret motor neurones were characterized using a whole-cell patch-clamp technique. Two outward currents could be distinguished. A transient outward current was elicited by delivering depolarizing voltage steps from a holding potential of -80 mV. This current was inactivated by holding the cells at a potential of -40 mV and was also blocked completely by 4-aminopyridine. A second current had a sustained time course and continued to be activated at a holding potential of -40 mV. This current was partially blocked by tetraethylammonium. These outward currents resembled two previously described potassium currents: the K+ A-current and the delayed K+ rectifier current respectively. Two inward currents were also detected. A fast transient current was blocked by tetrodotoxin and inactivated at holding potential of -40 mV, suggesting that this is an inward Na+ current. A second inward current had a sustained time course and was affected neither by tetrodotoxin nor by holding the cell at a potential of -40 mV. This current was substantially enhanced by the addition of Ba2+ to the bath or when equimolar Ba2+ replaced Ca2+ as the charge carrier. Furthermore, this current was significantly suppressed by nifedipine. All these points suggest that this is an L-type Ca2+ current. Bath application of nifedipine into an isolated swimmeret preparation affected both the frequency of the swimmeret rhythm and the duration of power-stroke activity, suggesting an important role for the inward Ca2+ current in maintaining a regular swimmeret rhythmic activity in crayfish.


1988 ◽  
Vol 91 (6) ◽  
pp. 781-798 ◽  
Author(s):  
K G Beam ◽  
C M Knudson

The whole-cell patch-clamp technique was used to study the properties of inward ionic currents found in primary cultures of rat and mouse skeletal myotubes and in freshly dissociated fibers of the flexor digitorum brevis muscle of rats. In each of these cell types, test depolarizations from the holding potential (-80 or -90 mV) elicited three distinct inward currents: a sodium current (INa) and two calcium currents. INa was the dominant inward current: under physiological conditions, the maximum inward INa was estimated to be at least 30-fold larger than either of the calcium currents. The two calcium currents have been termed Ifast and Islow, corresponding to their relative rates of activation. Ifast was activated by test depolarizations to around -40 mV and above, peaked in 10-20 ms, and decayed to baseline in 50-100 ms. Islow was activated by depolarizations to approximately 0 mV and above, peaked in 50-150 ms, and decayed little during a 200-ms test pulse. Ifast was inactivated by brief, moderate depolarizations; for a 1-s change in holding potential, half-inactivation occurred at -55 to -45 mV and complete inactivation occurred at -40 to -30 mV. Similar changes in holding potential had no effect on Islow. Islow was, however, inactivated by brief, strong depolarizations (e.g., 0 mV for 2 s) or maintained, moderate depolarizations (e.g., -40 mV for 60 s). Substitution of barium for calcium had little effect on the magnitude or time course of either Ifast or Islow. The same substitution shifted the activation curve for Islow approximately 10 mV in the hyperpolarizing direction without affecting the activation of Ifast. At low concentrations (50 microM), cadmium preferentially blocked Islow compared with Ifast, while at high concentrations (1 mM), it blocked both Ifast and Islow completely. The dihydropyridine calcium channel antagonist (+)-PN 200-110 (1 microM) caused a nearly complete block of Islow without affecting Ifast. At a holding potential of -80 mV, the half-maximal blocking concentration (K0.5) for the block of Islow by (+)-PN 200-110 was 182 nM. At depolarized holding potentials that inactivated Islow by 35-65%, K0.5 decreased to 5.5 nM.


1994 ◽  
Vol 267 (6) ◽  
pp. H2508-H2515
Author(s):  
J. Song ◽  
M. J. Davis

Bradykinin (BK) is known to activate several types of ion channels in endothelial cells, including a K+ channel and a nonselective cation channel. The predominant BK-activated current in most endothelial cells appears to be an outward, Ca(2+)-activated K+ current. We consistently recorded a rapidly activated, spontaneously inactivated inward current stimulated by BK in bovine coronary venular endothelial cells (CVECs). With the use of a whole cell, perforated patch recording mode, the average magnitude of the current was -293 +/- 38 pA. Simultaneous measurements of current and intracellular Ca2+ concentration ([Ca2+]i) showed that the inward current correlated closely with transient increases in [Ca2+]i due to Ca2+ release from intracellular stores. The current could be blocked by 4,4'-diisothiocyanatostilbene-2, 2'-disulfonic acid (DIDS) but not by La3+, and it persisted in Ca(2+)-free/Na(+)-free solution. When intra- and/or extracellular Cl- concentrations were altered, the reversal potential of the current shifted according to the calculated Cl- -equilibrium potential, indicating that the current was carried primarily by Cl-. Another inward current was also activated by BK. This current was slower to activate, could be blocked by La3+, but was not blocked by DIDS. The time course of the slowly activated current correlated with the plateau phase of the BK-stimulated [Ca2+]i increase, which was similar to the behavior of a nonselective cation current reported previously. We propose that these two currents may contribute to the depolarizations and net inward currents induced by BK in this cell line.


1984 ◽  
Vol 83 (6) ◽  
pp. 919-940 ◽  
Author(s):  
A Hermann ◽  
A L Gorman

The effects of quinidine on the fast, the delayed, and the Ca2+-activated K+ outward currents, as well as on Na+ and Ca2+ inward currents, were studied at the soma membrane from neurons of the marine mollusk Aplysia californica. External quinidine blocks these current components but to different degrees. Its main effect is on the voltage-dependent, delayed K+ current, and it resembles the block produced by quaternary ammonium ions (Armstrong, C. M., 1975, Membranes, Lipid Bilayers and Biological Membranes: Dynamic Properties, 3:325-358). The apparent dissociation constant is 28 microM at V = +20 mV. The blocking action is voltage and time dependent and increases during maintained depolarization. The data are consistent with the block occurring approximately 70-80% through the membrane electric field. Internal injection of quinidine has an effect similar to that obtained after external application, but its time course of action is faster. External quinidine may therefore have to pass into or through the membrane to reach a blocking site. The Ca2+-activated K+ current is blocked by external quinidine at concentrations 20-50-fold higher compared with the delayed outward K+ current. In addition, it prolongs the time course of decay of the Ca2+-activated K+ current. Na+ and Ca2+ inward currents are also blocked by external quinidine, but again at higher concentrations. The effects of quinidine on membrane currents can be seen from its effect on action potentials and the conversion of repetitive "beating" discharge activity to "bursting" pacemaker activity.


1990 ◽  
Vol 259 (2) ◽  
pp. H626-H634
Author(s):  
C. F. Starmer ◽  
V. V. Nesterenko ◽  
F. R. Gilliam ◽  
A. O. Grant

Models of ion channel blockade are frequently validated with observations of ionic currents resulting from electrical or chemical stimulation. Model parameters for some models (modulated receptor hypothesis) cannot be uniquely determined from ionic currents. The time course of ionic currents reflects the activation (fraction of available channels that conduct in the presence of excitation) and availability of channels (the ability of the protein to make a transition to a conducting conformation and where this conformation is not complexed with a drug). In the presence of a channel blocking agent, the voltage dependence of availability appears modified and has been interpreted as evidence that drug-complexed channels exhibit modified transition rates between channel protein conformations. Because blockade and availability both modify ionic currents, their individual contributions to macroscopic conductance cannot be resolved from ionic currents except when constant affinity binding to a bindable site is assumed. Experimental studies of nimodipine block of calcium channels and lidocaine block of sodium channels illustrate these concepts.


1995 ◽  
Vol 268 (2) ◽  
pp. C389-C401 ◽  
Author(s):  
S. Chepilko ◽  
H. Zhou ◽  
H. Sackin ◽  
L. G. Palmer

The renal K+ channel (ROMK2) was expressed in Xenopus oocytes, and the patch-clamp technique was used to assess its conducting and gating properties. In cell-attached patches with 110 mM K+ in the bath and pipette, the reversal potential was near zero and the inward conductance (36 pS) was larger than the outward conductance (17 pS). In excised inside-out patches the channels showed rectification in the presence of 5 mM Mg2+ on the cytoplasmic side but not in Mg(2+)-free solution. Inward currents were also observed when K+ was replaced in the pipette by Rb+, NH4+, or thallium (Tl+). The reversal potentials under these conditions yielded a selectivity sequence of Tl+ > K+ > Rb+ > NH4+. On the other hand, the slope conductances for inward current gave a selectivity sequence of K+ = NH4+ > Tl+ > Rb+. The differences in the two sequences can be explained by the presence of cation binding sites within the channel, which interact with Rb+ and Tl+ more strongly and with NH4+ less strongly than with K+. Two other ions, Ba2+ and Cs+, blocked the channel from the outside. The effect of Ba2+ (1 mM) was to reduce the open probability of the channels, whereas Cs+ (10 mM) reduced the apparent single-channel current. The effects of both blockers are enhanced by membrane hyperpolarization. The kinetics of the channel were also studied in cell-attached patches. With K+ in the pipette the distribution of open times could be described by a single exponential (tau 0 = 25 ms), whereas two exponentials (tau 1 = 1 ms, tau 2 = 30 ms) were required to describe the closed-time distribution. Hyperpolarization of the oocyte membrane decreased the open probability and tau 0, and increased tau 1, tau 2, and the number of long closures. The presence of Tl+ in the pipette significantly altered the kinetics, reducing tau 0 and eliminating the long-lived closures. These results suggest that the gating of the channel may depend on the nature of the ion in the pore.


2013 ◽  
Vol 109 (7) ◽  
pp. 1704-1712 ◽  
Author(s):  
Michelino Puopolo ◽  
Alexander M. Binshtok ◽  
Gui-Lan Yao ◽  
Seog Bae Oh ◽  
Clifford J. Woolf ◽  
...  

QX-314 ( N-ethyl-lidocaine) is a cationic lidocaine derivative that blocks voltage-dependent sodium channels when applied internally to axons or neuronal cell bodies. Coapplication of external QX-314 with the transient receptor potential vanilloid 1 protein (TRPV1) agonist capsaicin produces long-lasting sodium channel inhibition in TRPV1-expressing neurons, suggestive of QX-314 entry into the neurons. We asked whether QX-314 entry occurs directly through TRPV1 channels or through a different pathway (e.g., pannexin channels) activated downstream of TRPV1 and whether QX-314 entry requires the phenomenon of “pore dilation” previously reported for TRPV1. With external solutions containing 10 or 20 mM QX-314 as the only cation, inward currents were activated by stimulation of both heterologously expressed and native TRPV1 channels in rat dorsal root ganglion neurons. QX-314-mediated inward current did not require pore dilation, as it activated within several seconds and in parallel with Cs-mediated outward current, with a reversal potential consistent with PQX-314/ PCs = 0.12. QX-314-mediated current was no different when TRPV1 channels were expressed in C6 glioma cells, which lack expression of pannexin channels. Rapid addition of QX-314 to physiological external solutions produced instant partial inhibition of inward currents carried by sodium ions, suggesting that QX-314 is a permeant blocker. Maintained coapplication of QX-314 with capsaicin produced slowly developing reduction of outward currents carried by internal Cs, consistent with intracellular accumulation of QX-314 to concentrations of 50–100 μM. We conclude that QX-314 is directly permeant in the “standard” pore formed by TRPV1 channels and does not require either pore dilation or activation of additional downstream channels for entry.


Sign in / Sign up

Export Citation Format

Share Document