Association of intrinsic pICln with volume-activated Cl− current and volume regulation in a native epithelial cell

1999 ◽  
Vol 276 (1) ◽  
pp. C182-C192 ◽  
Author(s):  
Lixin Chen ◽  
Liwei Wang ◽  
Tim J. C. Jacob

We investigated the relationship between pICln, the volume-activated Cl−current, and volume regulation in native bovine nonpigmented ciliary epithelial (NPCE) cells. Immunofluorescence studies demonstrated the presence of pICln protein in the NPCE cells. Exposure to hypotonic solution activated a Cl− current and induced regulatory volume decrease (RVD) in freshly isolated bovine NPCE cells. Three antisense oligonucleotides complementary to human pICln mRNA were used in the experiments. The antisense oligonucleotides were taken up by the cells in a dose-dependent manner. The antisense oligonucleotides, designed to be complementary to the initiation codon region of the human pICln mRNA, “knocked down” the pICln protein immunofluorescence, delayed the activation of volume-activated Cl− current, diminished the value of the current, and reduced the ability of the cells to volume regulate. We conclude that pIClnis involved in the activation pathway of the volume-activated Cl− current and RVD following hypotonic swelling.

1990 ◽  
Vol 259 (6) ◽  
pp. F950-F960 ◽  
Author(s):  
N. A. McCarty ◽  
R. G. O'Neil

The mechanism underlying the activation of hypotonic cell volume regulation was studied in rabbit proximal straight tubule (PST). When isolated non-perfused tubules were exposed to hypotonic solution, cells swelled rapidly and then underwent a regulatory volume decrease (RVD). The extent of regulation after swelling was highly dependent on extracellular Ca concentration ([Ca2+]o), with a half-maximal inhibition (K1/2) for [Ca2+]o of approximately 100 microM. RVD was blocked by the Ca-channel blockers verapamil, lanthanum, and the dihydropyridines (DHP) nifedipine and nitrendipine, implicating voltage-activated Ca channels in the RVD response. Using the fura-2 fluorescence-ratio technique, we observed that cell swelling caused a sustained rise in intracellular Ca ([Ca2+]i) only when [Ca2+]o was normal (1 mM) but not when [Ca2+]o was low (1-10 microM). Furthermore, external Ca was required early on during swelling to induce RVD. If RVD was initially blocked by reducing [Ca2+]o or by addition of verapamil during hypotonic swelling, volume regulation could only be restored by subsequently inducing Ca entry within the first 1 min or less of exposure to hypotonic solution. These data indicate a "calcium window" of less than 1 min, during which RVD is sensitive to Ca, and that part of the Ca-dependent mechanism responsible for achieving RVD undergoes inactivation after swelling. It is concluded that RVD in rabbit PST is modulated by Ca via a DHP-sensitive mechanism in a time-dependent manner.


1995 ◽  
Vol 268 (4) ◽  
pp. C894-C902 ◽  
Author(s):  
C. C. Armsby ◽  
C. Brugnara ◽  
S. L. Alper

We investigated cation transport and cell volume regulation in erythrocytes of CD1 and C57/B6 mice. Swelling of cells from either strain stimulated K+ efflux that was insensitive to ouabain, bumetanide, and clotrimazole. Seventy-five percent of swelling-induced K+ efflux was Cl- dependent (inhibited by sulfamate or methanesulfonate, partially by NO3-, but not by SCN-) and was inhibited by okadaic acid (OA; 50% inhibitory concentration = 18 +/- 6 nM in CD1 and 10 +/- 4 nM in C57/B6). In both strains, K+ efflux into isotonic medium was stimulated by staurosporine or by N-ethylmaleimide, and the latter was partially blocked by pretreatment of cells with OA. When cells of either strain were incubated in hypotonic medium or preswollen isosmotically with nystatin, OA-sensitive regulatory volume decrease (RVD) and K+ loss were observed. RVD produced by hypotonic swelling was prevented by Cl- replacement with sulfamate or methanesulfonate. These properties suggest the presence in outbred and inbred mouse erythrocytes of RVD mediated by K(+)-Cl- cotransport.


2021 ◽  
Vol 22 (16) ◽  
pp. 8864
Author(s):  
Hongxi Chen ◽  
Mohammad Amjad Hossain ◽  
Jong-Hoon Kim ◽  
Jae Youl Cho

Kahweol is a diterpene present in coffee. Until now, several studies have shown that kahweol has anti-inflammatory and anti-angiogenic functions. Due to the limited research available about skin protection, this study aims to discern the potential abilities of kahweol and the possible regulation targets. First, the cytotoxicity of kahweol was checked by 3-4-5-dimethylthiazol-2-yl)-2-5-diphenyltetrazolium bromide assay, while 2,20-azino-bis (3ethylbenzothiazoline-6-sulphonic acid) diammonium salt and 1-diphenyl-2-picryl-hydrazyl were used to examine the radical scavenging ability. Polymerase chain reaction analysis was performed to explore the proper time points and doses affecting skin hydration and barrier-related genes. Luciferase assay and Western blotting were used to explore the possible transcription factors. Finally, fludarabine (a STAT1 inhibitor) was chosen to discern the relationship between skin-moisturizing factors and STAT1. We found that HaCaT cells experienced no toxicity from kahweol, and kahweol displayed moderate radical scavenging ability. Moreover, kahweol increased the outcome of HAS1, HAS2, occludin, and TGM-1 from six hours in a dose-dependent manner as well as the activation of STAT1 from six hours. Additionally, kahweol recovered the suppression of HAS2, STAT1-mediated luciferase activity, and HA secretion, which was all downregulated by fludarabine. In this study, we demonstrated that kahweol promotes skin-moisturizing activities by upregulating STAT1.


1984 ◽  
Vol 223 (1) ◽  
pp. 39-46 ◽  
Author(s):  
D C DeSante ◽  
L Little ◽  
D E Peavy ◽  
F Vinicor

An improved non-perfusion method for the preparation of cultured foetal-rat hepatocytes is described. Digestion of the liver with collagenase and deoxyribonuclease I gave yields of 40 × 10(6) hepatocytes/g of liver. The plating efficiency of hepatocytes in medium with 10 microM-cortisol was 50%. Cell morphology and metabolism were maintained through 3 days of monolayer culture, with minimal contamination by haematopoietic cells or fibroblasts. The cultured cells bound and degraded 125I-insulin in a time- and dose-dependent manner. The estimated ED50 for competitive binding at 37 degrees C was 1.1 nM. Curvilinear Scatchard plots were observed, with estimates of 16 500 high-affinity sites (Kd = 813 pM) and 53 000 low-affinity sites (Kd = 23 nM) per cell. The cultured cells demonstrated a glycogenic response to insulin, with an estimated ED50 of 120 pM. The degree of glycogenic response to insulin varied with time in culture: 500% above basal on day 1, 200% on day 2, and only 150% on day 3. Cultured foetal cells also exhibited a time-dependent uptake of 2-aminoisobutyric acid, which, in contrast with previous reports with adult cells, was not stimulated by the presence of 10 nM-insulin. Cultured foetal hepatocytes may provide an interesting model with which to study the relationship between insulin-receptor binding and insulin action.


1991 ◽  
Vol 260 (1) ◽  
pp. C122-C131 ◽  
Author(s):  
K. Drewnowska ◽  
C. M. Baumgarten

Video microscopy was used to study the regulation of cell volume in isolated rabbit ventricular myocytes. Myocytes rapidly (less than or equal to 2 min) swelled and shrank in hyposmotic and hyperosmotic solutions, respectively, and this initial volume response was maintained without a regulatory volume decrease or increase for 20 min. Relative cell volumes (normalized to isosmotic solution, 1T) were as follows: 1.41 +/- 0.01 in 0.6T, 1.20 +/- 0.04 in 0.8T, 0.71 +/- 0.04 in 1.8T, and 0.57 +/- 0.03 in 2.6T. These volume changes were significantly less than expected if all of the measured volume was osmotically active water. Changes in width and thickness were significantly greater than changes in cell length. The idea that cotransport contributes to cell volume regulation was tested by inhibiting Na(+)-K(+)-2Cl- cotransport with bumetanide (BUM) and Na(+)-Cl- cotransport with chlorothiazide (CTZ). Under isotonic conditions, a 10-min exposure to BUM (1 microM), CTZ (100 microM), or BUM (10 microM) plus CTZ (100 microM) decreased relative cell volume to 0.87 +/- 0.01, 0.86 +/- 0.02, and 0.82 +/- 0.04, respectively. BUM plus CTZ also modified the response to osmotic stress. Swelling in 2.6T medium was 76% greater and shrinkage in 0.6T medium was 29% less than in the absence of diuretics. In contrast to the rapid effects of diuretics, inhibition of the Na(+)-K+ pump with 10 microM ouabain for 20 min did not affect cell volume in 1T solution. Nevertheless, ouabain decreased swelling in 0.6T medium by 52% and increased shrinkage in 1.8T medium by 34%. These data suggest that under isotonic conditions Na(+)-K(+)-2Cl- and Na(+)-Cl- cotransport are critical in establishing cell volume, but osmoregulation can compensate for Na(+)-K+ pump inhibition for at least 20 min. Under anisotonic conditions, the Na(+)-K+ pump and Na(+)-K(+)-2Cl- and/or Na(+)-Cl- cotransport are important in myocyte volume regulation.


2005 ◽  
Vol 23 (22) ◽  
pp. 5235-5246 ◽  
Author(s):  
Román Peréz-Soler ◽  
Leonard Saltz

The human epidermal growth factor receptor (HER1/EGFR) is dysregulated in many solid tumors, making it an attractive target for anticancer therapy. A number of agents that target this receptor are in use or in development. A specific adverse effect common to this class of agent is a papulopustular rash, usually on the face and upper torso, which generally occurs in a dose-dependent manner. Little is known about the etiology of this rash, and there are no clear evidence-based management recommendations. Histologic data indicate that rash may be caused by HER1/EGFR inhibition in skin, although this has not been confirmed. Findings suggest that there is a relationship between the development of rash and response and/or survival, making rash a potential surrogate marker of activity. Data from multiple studies with cetuximab and erlotinib show a consistent relationship between rash and response, as well as between rash and survival. The relationship between rash and clinical outcome is currently less consistent for gefitinib. Some studies report a correlation, whereas others do not. The cause of the possible relationship between rash and clinical benefit remains unclear at this time, and additional studies are needed to determine the clinical utility of this observation.


1997 ◽  
Vol 273 (2) ◽  
pp. C360-C370 ◽  
Author(s):  
J. C. Summers ◽  
L. Trais ◽  
R. Lajvardi ◽  
D. Hergan ◽  
R. Buechler ◽  
...  

To gain insight into the mechanism(s) by which cells sense volume changes, specific predictions of the macromolecular crowding theory (A. P. Minton. In: Cellular and Molecular Physiology of Cell Volume Regulation, edited by K. Strange. Boca Raton, FL: CRC, 1994, p. 181-190. A. P. Minton, C. C. Colclasure, and J. C. Parker. Proc. Natl. Acad. Sci. USA 89: 10504-10506, 1992) were tested on the volume of internally perfused barnacle muscle cells. This preparation was chosen because it allows assessment of the effect on cell volume of changes in the intracellular macromolecular concentration and size while maintaining constant the ionic strength, membrane stretch, and osmolality. The predictions tested were that isotonic replacement of large macromolecules by smaller ones should induce volume decreases proportional to the initial macromolecular concentration and size as well as to the magnitude of the concentration reduction. The experimental results were consistent with these predictions: isotonic replacement of proteins or polymers with sucrose induced volume reductions, but this effect was only observed when the replacement was > or = 25% and the particular macromolecule had an average molecular mass of < or = 20 kDa and a concentration of at least 18 mg/ml. Volume reduction was effected by a mechanism identical with that of hypotonicity-induced regulatory volume decrease, namely, activation of verapamil-sensitive Ca2+ channels.


Blood ◽  
1992 ◽  
Vol 79 (10) ◽  
pp. 2708-2716 ◽  
Author(s):  
M Arsura ◽  
M Introna ◽  
F Passerini ◽  
A Mantovani ◽  
J Golay

Abstract The B-myb gene is highly homologous to the c-myb protooncogene in several domains and also shares some of the functions of c-myb in that it can act as a transcriptional activator. In addition, the expression of both the B-myb and c-myb genes correlates with proliferation of normal hematopoietic cells. We investigated more directly the role of B- myb in proliferation of hematopoietic cell lines using B-myb-specific antisense oligonucleotides. We showed that several anti-B-myb oligonucleotides, complementary to distinct regions of the gene, inhibit significantly and in a dose-dependent manner the proliferation of all myeloid or lymphoid cell lines tested. This block in proliferation was not accompanied by detectable differentiation of U937 or HL60 cells to macrophages or granulocytes either spontaneously or after exposure to chemical agents. These data suggest that the B-myb gene, like c-myb, is necessary for hematopoietic cell proliferation.


1996 ◽  
Vol 270 (6) ◽  
pp. C1790-C1798 ◽  
Author(s):  
Y. Chen ◽  
S. M. Simasko ◽  
J. Niggel ◽  
W. J. Sigurdson ◽  
F. Sachs

Hypotonic cell swelling triggers an increase in intracellular Ca2+ concentration that is deemed responsible for the subsequent regulated volume decrease in many cells. To understand the mechanisms underlying this increase, we have studied the Ca2+ sources that contribute to hypotonic cell swelling-induced Ca2+ increase (HICI) in GH3 cells. Fura 2 fluorescence of cell populations revealed that extracellular, but not intracellular, stores of Ca2+ were required. HICI was abolished by nifedipine, a blocker of L-type Ca2+ channels, and Gd3+, a nonspecific blocker of stretch-activated channels (SACs), suggesting two components for the Ca2+ membrane pathway: L-type Ca2+ channels and SACs. Using HICI as an assay, we found that venom from the spider Grammostola spatulata could block HICI without blocking L-type Ca2+ channels. The venom did, however, block SAC activity. This suggests that Ca(2+)-permeable SACs, rather than L-type Ca2+ channels, are the sensing elements for HICI. These results support the model for volume regulation in which SACs, activated by an increase of the membrane tension during hypotonic cell swelling, trigger HICI, leading to a volume decrease.


2007 ◽  
Vol 292 (5) ◽  
pp. F1411-F1417 ◽  
Author(s):  
Hiroaki Miyazaki ◽  
Atsushi Shiozaki ◽  
Naomi Niisato ◽  
Yoshinori Marunaka

Regulatory volume decrease (RVD) occurs after hypotonicity-caused cell swelling. RVD is caused by activation of ion channels and transporters, which cause effluxes of K+, Cl−, and H2O, leading to cell shrinkage. Recently, we showed that hypotonicity stimulated transepithelial Na+ reabsorption via elevation of epithelial Na+ channel (α-ENaC) expression in renal epithelia A6 cells in an RVD-dependent manner and that reduction of intracellular Cl− concentration ([Cl−]i) stimulated the Na+ reabsorption. These suggest that RVD would reveal its stimulatory action on the Na+ reabsorption by reducing [Cl−]i. However, the reduction of [Cl−]i during RVD has not been definitely analyzed due to technical difficulties involved in halide-sensitive fluorescent dyes. In the present study, we developed a new method for the measurement of [Cl−]i change during RVD by using a high-resolution flow cytometer with a halide-specific fluorescent dye, N-(6-methoxyquinolyl) acetoethyl ester. The [Cl−]i in A6 cells in an isotonic medium was 43.6 ± 3.1 mM. After hypotonic shock (268 to 134 mosmol/kgH2O), a rapid increase of cell volume followed by RVD occurred. The RVD caused drastic diminution of [Cl−]i from 43.6 to 10.8 mM. Under an RVD-blocked condition with NPPB (Cl− channel blocker) or quinine (K+ channel blocker), we did not detect the reduction of [Cl−]i. Based on these observations, we conclude that one of the physiological significances of RVD is the reduction of [Cl−]i and that RVD shows its action via reduction of [Cl−]i acting as an intracellular signal regulating cellular physiological functions.


Sign in / Sign up

Export Citation Format

Share Document