Transcriptional regulation of rat Na+/H+exchanger isoform-2 (NHE-2) gene by Sp1 transcription factor

2001 ◽  
Vol 280 (5) ◽  
pp. C1168-C1175 ◽  
Author(s):  
Liqun Bai ◽  
James F. Collins ◽  
Hua Xu ◽  
Fayez K. Ghishan

The rat Na+/H+ exchanger isoform-2 ( NHE-2) gene promoter lacks a TATA box and is very GC rich. A minimal promoter extending from bp −36 to +116 directs high-level expression of NHE-2 in mouse inner medullary collecting duct (mIMCD-3) cells. Four Sp1 consensus elements were found in this region. The introduction of mutations within these Sp1 consensus elements and DNA footprinting revealed that only two of them were utilized and are critical for basal transcriptional activation in mIMCD-3 cells. The use of Sp1, Sp3, and Sp4 antisera in electrophoretic mobility shift assays demonstrated that Sp1, Sp3, and Sp4 bound to this minimal promoter. We further analyzed the transcriptional regulation of NHE-2 by members of the Sp1 multigene family. In Drosophila SL2 cells, which lack endogenous Sp1, the minimal promoter cannot drive transcription. Introduction of Sp1 activated transcription over 100-fold, suggesting that Sp1 is critical for transcriptional regulation. However, neither Sp3 nor Sp4 was able to activate transcription in these cells. Furthermore, in mIMCD-3 cells, Sp1-mediated transcriptional activation was repressed by expression of Sp3 and Sp4. These data suggest that Sp1 is critical for the basal promoter function of rat NHE-2 and that Sp3 and Sp4 may repress transcriptional activation by competing with Sp1 for binding to core cis-elements.

Blood ◽  
2000 ◽  
Vol 95 (12) ◽  
pp. 3734-3741 ◽  
Author(s):  
Arati Khanna-Gupta ◽  
Theresa Zibello ◽  
Carl Simkevich ◽  
Alan G. Rosmarin ◽  
Nancy Berliner

Abstract In this study, we sought to identify factors responsible for the positive modulation of lactoferrin (LF), a neutrophil-specific, secondary-granule protein gene. Initial reporter gene transfection assays indicated that the first 89 base pairs of the LF promoter are capable of directing myeloid-specific LF gene expression. The presence of a C/EBP site flanked by 2 Sp1 sites within this segment of the LF promoter prompted us to investigate the possible role of these sites in LF expression. Cotransfection studies of LF-89luc plasmid with increasing concentrations of a C/EBP expression vector in myeloid cells resulted in a linear transactivation of luciferase reporter activity. Electrophoretic mobility shift assays found that the C/EBP site is recognized by C/EBP and that both LF Sp1 binding sites bind the Sp1 transcription factor specifically in myeloid cells. Mutation of either Sp1 site markedly reduced activity of the LF-89luc plasmid in myeloid cells, and neither Sp1 mutant plasmid was transactivated by a C/EBP expression plasmid to the same extent as wild-type LF-89luc. We also transfected LF-89luc into Drosophila Schneider cells, which do not express endogenous Sp1, and demonstrated up-regulation of luciferase activity in response to a cotransfected Sp1 expression plasmid, as well as to a C/EBP expression plasmid. Furthermore, cotransfection of LF-89luc plasmid simultaneously with C/EBP and Sp1 expression plasmids resulted in an increase in luciferase activity greater than that induced by either factor alone. Taken together, these observations indicate a functional interaction between C/EBP and Sp1 in mediating LF expression.


2010 ◽  
Vol 45 (3) ◽  
pp. 119-132 ◽  
Author(s):  
Ida G Anemaet ◽  
Juan Diego González ◽  
María C Salgado ◽  
Marina Giralt ◽  
Felipe Fernández ◽  
...  

Alanine aminotransferase (Alt) provides a molecular link between carbohydrate and amino acid metabolism. In the cell context, the predominant Alt isozyme is located in the cytosol. To gain insight into the transcriptional regulation of the cytosolic alt gene (calt), we cloned and characterized the calt promoter from gilthead sea bream (Sparus aurata). Transient transfection of sea bass larvae cells with deleted calt promoter constructs and electrophoretic mobility shift assays allowed us to identify p300 and c-Myb as new factors in the transcriptional regulation of calt expression. Transfection studies carried out with an acetylase-deficient mutant p300 (p300DY) revealed that the acetyltransferase activity of p300 is essential for the p300-mediated transcriptional activation of S. aurata calt. We had previously found up-regulation of liver cAlt2, an alternatively spliced isoform of calt, under gluconeogenic conditions and in streptozotocin (STZ)-treated S. aurata. Quantitative RT-PCR assays showed that increased p300 and c-Myb mRNA levels in the liver of starved S. aurata contribute to enhancing the transcription of cAlt2. Consistently, the administration of insulin decreased both p300 and c-Myb expression. The mRNA levels of p300 and c-Myb were also analyzed in the liver of STZ-induced diabetic S. aurata. Treatment with STZ increased the expression of p300, whereas it decreased c-Myb. Our findings suggest an involvement of p300 and c-Myb in up-regulation of cAlt2 in the liver of S. aurata under starvation. In addition, these results provide evidence for a role of p300 in diabetes.


Blood ◽  
2000 ◽  
Vol 95 (12) ◽  
pp. 3734-3741 ◽  
Author(s):  
Arati Khanna-Gupta ◽  
Theresa Zibello ◽  
Carl Simkevich ◽  
Alan G. Rosmarin ◽  
Nancy Berliner

In this study, we sought to identify factors responsible for the positive modulation of lactoferrin (LF), a neutrophil-specific, secondary-granule protein gene. Initial reporter gene transfection assays indicated that the first 89 base pairs of the LF promoter are capable of directing myeloid-specific LF gene expression. The presence of a C/EBP site flanked by 2 Sp1 sites within this segment of the LF promoter prompted us to investigate the possible role of these sites in LF expression. Cotransfection studies of LF-89luc plasmid with increasing concentrations of a C/EBP expression vector in myeloid cells resulted in a linear transactivation of luciferase reporter activity. Electrophoretic mobility shift assays found that the C/EBP site is recognized by C/EBP and that both LF Sp1 binding sites bind the Sp1 transcription factor specifically in myeloid cells. Mutation of either Sp1 site markedly reduced activity of the LF-89luc plasmid in myeloid cells, and neither Sp1 mutant plasmid was transactivated by a C/EBP expression plasmid to the same extent as wild-type LF-89luc. We also transfected LF-89luc into Drosophila Schneider cells, which do not express endogenous Sp1, and demonstrated up-regulation of luciferase activity in response to a cotransfected Sp1 expression plasmid, as well as to a C/EBP expression plasmid. Furthermore, cotransfection of LF-89luc plasmid simultaneously with C/EBP and Sp1 expression plasmids resulted in an increase in luciferase activity greater than that induced by either factor alone. Taken together, these observations indicate a functional interaction between C/EBP and Sp1 in mediating LF expression.


2007 ◽  
Vol 38 (5) ◽  
pp. 537-546 ◽  
Author(s):  
M J Moreno-Aliaga ◽  
M M Swarbrick ◽  
S Lorente-Cebrián ◽  
K L Stanhope ◽  
P J Havel ◽  
...  

We have previously demonstrated that insulin-stimulated glucose metabolism, and not insulin per se, mediates the effects of insulin to increase the transcriptional activity of the leptin promoter in adipocytes. Here, we sought to identify the specific cis-acting DNA elements required for the upregulation of leptin gene transcription in response to insulin-mediated glucose metabolism. To accomplish this, 3T3-L1 cells and primary rat adipocytes were transfected with a series of luciferase reporter genes containing portions of the mouse leptin promoter. Using this method, we identified an element between −135 and −95 bp (relative to the transcriptional start site) that mediated transcription in response to insulin-stimulated glucose metabolism in adipocytes. This effect was abolished by incubation with 2-deoxy-d-glucose, a competitive inhibitor of glucose metabolism. Gel shift electrophoretic mobility shift assays confirmed that the stimulatory effect of insulin-mediated glucose metabolism on leptin transcription was mediated by a previously identified Sp1 site. Consistent with these findings, incubation of primary rat adipocytes with WP631, a specific inhibitor of specificity protein (Sp)1-dependent transcription, inhibited glucose- and insulin-stimulated, but not basal, leptin secretion. Together, these findings support a key role for Sp1 in the transcriptional activation of the leptin gene promoter by insulin-mediated glucose metabolism.


1997 ◽  
Vol 11 (11) ◽  
pp. 1651-1658 ◽  
Author(s):  
Limin Liu ◽  
Douglas Leaman ◽  
Michel Villalta ◽  
R. Michael Roberts

Abstract CG is required for maintenance of the corpus luteum during pregnancy in higher primates. As CG is a heterodimeric molecule, some form of coordinated control must be maintained over the transcription of its two subunit genes. We recently found that expression of human CG β-subunit (hCGβ) in JAr human choriocarcinoma cells was almost completely silenced by the embryonic transcription factor Oct-3/4, which bound to a unique ACAATAATCA octameric sequence in the hCGβ gene promoter. Here we report that Oct-3/4 is also a potent inhibitor of hCG α-subunit (hCGα) expression in JAr cells. Oct-3/4 reduced human GH reporter expression from the −170 hCGα promoter in either the presence or absence of cAMP by about 70% in transient cotransfection assays, but had no effect on expression from either the −148 hCGα or the −99 hCGα promoter. Unexpectedly, no Oct-3/4-binding site was identified within the −170 to −148 region of the hCGα promoter, although one was found around position −115 by both methylation interference footprinting and electrophoretic mobility shift assays. Site-directed mutagenesis of this binding site destroyed the affinity of the promoter for Oct-3/4, but did not affect repression of the promoter. Therefore, inhibition of hCGα gene transcription by Oct-3/4 appears not to involve direct binding of this factor to the site responsible for silencing. When stably transfected into JAr cells, Oct-3/4 reduced the amounts of both endogenous hCGα mRNA and protein by 70–80%. Oct-3/4 is therefore capable of silencing both hCGα and hCGβ gene expression. We suggest that as the trophoblast begins to form, reduction of Oct-3/4 expression permits the coordinated onset of transcription from the hCGα and hCGβ genes.


2000 ◽  
Vol 350 (1) ◽  
pp. 123-129 ◽  
Author(s):  
Charbel MASSAAD ◽  
Michèle GARLATTI ◽  
Elizabeth M. WILSON ◽  
Françoise CADEPOND ◽  
Robert BAROUKI

Cytosolic aspartate aminotransferase (cAspAT) is regulated by glucocorticoids in rat liver and kidney. Part of this regulation is mediated by an unusual glucocorticoid-responsive element (GRE)-like sequence called GRE A. GRE A is composed of two overlapping imperfect GREs, each comprising a conserved half-site (half-sites 1 and 4 respectively) and a poorly conserved half-site (half-sites 2 and 3 respectively). The sequence binds co-operatively two dimers of the glucocorticoid receptor (GR) and mediates efficient glucocorticoid regulation of gene expression. Analysis of deletions of the cAspAT gene promoter and subcloning of GRE A upstream of the thymidine kinase promoter indicate that this sequence is responsive to glucocorticoids, but not to androgens. Electrophoretic mobility shift assays indicate that the GRE A unit does not bind the androgen receptor (AR). The modification of three nucleotides in the poorly conserved half-sites 2 and 3, converting GRE A into two overlapping high-affinity GREs (ov-cGRE), resulted in co-operative binding of the AR. Furthermore, ov-cGRE efficiently mediated androgen regulation of the thymidine kinase promoter. A single base modification in half-site 2 or 3 in GRE A allowed the binding of the AR as one or two dimers respectively, and restored transcriptional activation by androgens only in the latter case. Thus the poor affinity of the AR for half-sites 2 and 3 prevented its binding to GRE A, indicating that the overlapping GRE A sequence of the cAspAT gene promoter discriminates a glucocorticoid-mediated from an androgen-mediated response.


2007 ◽  
Vol 27 (24) ◽  
pp. 8834-8847 ◽  
Author(s):  
Hua Fung ◽  
Pingfang Liu ◽  
Bruce Demple

ABSTRACT Arsenite is a human carcinogen causing skin, bladder, and lung tumors, but the cellular mechanisms underlying these effects remain unclear. We investigated expression of the essential base excision DNA repair enzyme apurinic endonuclease 1 (Ape1) in response to sodium arsenite. In mouse 10T½ fibroblasts, Ape1 induction in response to arsenite occurred about equally at the mRNA, protein, and enzyme activity levels. Analysis of the APE1 promoter region revealed an AP-1/CREB binding site essential for arsenite-induced transcriptional activation in both mouse and human cells. Electrophoretic mobility shift assays indicated that an ATF4/c-Jun heterodimer was the responsible transcription factor. RNA interference targeting c-Jun or ATF4 eliminated arsenite-induced APE1 transcription. Suppression of Ape1 or ATF4 sensitized both mouse fibroblasts (10T½) and human lymphoblastoid cells (TK6) to arsenite cytotoxicity. Expression of Ape1 from a transgene did not efficiently restore arsenite resistance in ATF4-depleted cells but did offset initial accumulation of abasic DNA damage following arsenite treatment. Mutagenesis by arsenite (at the TK and HPRT loci in TK6 cells) was observed only for ATF4-depleted cells, which was strongly offset by Ape1 expression from a transgene. Therefore, the ATF4-mediated up-regulation of Ape1 and other genes plays a key role against arsenite-mediated toxicity and mutagenesis.


1994 ◽  
Vol 14 (12) ◽  
pp. 8365-8375 ◽  
Author(s):  
P Lieberman

Transcriptional activator proteins stimulate the formation of a preinitiation complex that may be distinct from a basal-level transcription complex in its composition and stability. Components of the general transcription factors that form activator-dependent stable intermediates were determined by the use of Sarkosyl and oligonucleotide challenge experiments. High-level transcriptional activation by the Epstein-Barr virus-encoded Zta protein required an activity in the TFIID fraction that is distinct from the TATA-binding protein (TBP) and the TBP-associated factors. This additional activity copurifies with and is likely to be identical to the previously defined coactivator, USA (M. Meisterernst, A. L. Roy, H. M. Lieu, and R. G. Roeder, Cell 66:981-994, 1991). The formation of a stable preinitiation complex intermediate resistant to Sarkosyl required the preincubation of the promoter DNA with Zta, holo-TFIID (TBP and TBP-associated factors), TFIIB, TFIIA, and the coactivator USA. The formation of a Zta response element-resistant preinitiation complex required the preincubation of promoter DNA with Zta, holo-TFIID, TFIIB, and TFIIA. Agarose gel electrophoretic mobility shift showed that a preformed Zta-holo-TFIID-TFIIA complex was resistant to Sarkosyl and to Zta response element oligonucleotide challenge. DNase I footprinting suggests that only Zta, holo-TFIID, and TFIIA make significant contacts with the promoter DNA. These results provide functional and physical evidence that the Zta transcriptional activator influences at least two distinct steps in preinitiation complex assembly, the formation of the stable holo-TFIID-TFIIA-promoter complex and the subsequent binding of TFIIB and a USA-like coactivator.


2014 ◽  
Vol 81 (1) ◽  
pp. 220-230 ◽  
Author(s):  
Wen-Mao Zhang ◽  
Jun-Jie Zhang ◽  
Xuan Jiang ◽  
Hongjun Chao ◽  
Ning-Yi Zhou

ABSTRACTPseudomonassp. strain WBC-3 utilizespara-nitrophenol (PNP) as a sole carbon and energy source. The genes involved in PNP degradation are organized in the following three operons:pnpA,pnpB, andpnpCDEFG. How the expression of the genes is regulated is unknown. In this study, an LysR-type transcriptional regulator (LTTR) is identified to activate the expression of the genes in response to the specific inducer PNP. While the LTTR coding genepnpRwas found to be not physically linked to any of the three catabolic operons, it was shown to be essential for the growth of strain WBC-3 on PNP. Furthermore, PnpR positively regulated its own expression, which is different from the function of classical LTTRs. A regulatory binding site (RBS) with a 17-bp imperfect palindromic sequence (GTT-N11-AAC) was identified in allpnpA,pnpB,pnpC, andpnpRpromoters. Through electrophoretic mobility shift assays and mutagenic analyses, this motif was proven to be necessary for PnpR binding. This consensus motif is centered at positions approximately −55 bp relative to the four transcriptional start sites (TSSs). RBS integrity was required for both high-affinity PnpR binding and transcriptional activation ofpnpA,pnpB, andpnpR. However, this integrity was essential only for high-affinity PnpR binding to the promoter ofpnpCDEFGand not for its activation. Intriguingly, unlike other LTTRs studied, no changes in lengths of the PnpR binding regions of thepnpAandpnpBpromoters were observed after the addition of the inducer PNP in DNase I footprinting.


Microbiology ◽  
2014 ◽  
Vol 160 (1) ◽  
pp. 91-101 ◽  
Author(s):  
Kambiz Morabbi Heravi ◽  
Josef Altenbuchner

Expression of mannitol utilization genes in Bacillus subtilis is directed by P mtlA , the promoter of the mtlAFD operon, and P mtlR , the promoter of the MtlR activator. MtlR contains phosphoenolpyruvate-dependent phosphotransferase system (PTS) regulation domains, called PRDs. The activity of PRD-containing MtlR is mainly regulated by the phosphorylation/dephosphorylation of its PRDII and EIIBGat-like domains. Replacing histidine 342 and cysteine 419 residues, which are the targets of phosphorylation in these two domains, by aspartate and alanine provided MtlR-H342D C419A, which permanently activates P mtlA in vivo. In the mtlR-H342D C419A mutant, P mtlA was active, even when the mtlAFD operon was deleted from the genome. The mtlR-H342D C419A allele was expressed in an Escherichia coli strain lacking enzyme I of the PTS. Electrophoretic mobility shift assays using purified MtlR-H342D C419A showed an interaction between the MtlR double-mutant and the Cy5-labelled P mtlA and P mtlR DNA fragments. These investigations indicate that the activated MtlR functions regardless of the presence of the mannitol-specific transporter (MtlA). This is in contrast to the proposed model in which the sequestration of MtlR by the MtlA transporter is necessary for the activity of MtlR. Additionally, DNase I footprinting, construction of P mtlA -P licB hybrid promoters, as well as increasing the distance between the MtlR operator and the −35 box of P mtlA revealed that the activated MtlR molecules and RNA polymerase holoenzyme likely form a class II type activation complex at P mtlA and P mtlR during transcription initiation.


Sign in / Sign up

Export Citation Format

Share Document