scholarly journals A natural sequence consisting of overlapping glucocorticoid-responsive elements mediates glucocorticoid, but not androgen, regulation of gene expression

2000 ◽  
Vol 350 (1) ◽  
pp. 123-129 ◽  
Author(s):  
Charbel MASSAAD ◽  
Michèle GARLATTI ◽  
Elizabeth M. WILSON ◽  
Françoise CADEPOND ◽  
Robert BAROUKI

Cytosolic aspartate aminotransferase (cAspAT) is regulated by glucocorticoids in rat liver and kidney. Part of this regulation is mediated by an unusual glucocorticoid-responsive element (GRE)-like sequence called GRE A. GRE A is composed of two overlapping imperfect GREs, each comprising a conserved half-site (half-sites 1 and 4 respectively) and a poorly conserved half-site (half-sites 2 and 3 respectively). The sequence binds co-operatively two dimers of the glucocorticoid receptor (GR) and mediates efficient glucocorticoid regulation of gene expression. Analysis of deletions of the cAspAT gene promoter and subcloning of GRE A upstream of the thymidine kinase promoter indicate that this sequence is responsive to glucocorticoids, but not to androgens. Electrophoretic mobility shift assays indicate that the GRE A unit does not bind the androgen receptor (AR). The modification of three nucleotides in the poorly conserved half-sites 2 and 3, converting GRE A into two overlapping high-affinity GREs (ov-cGRE), resulted in co-operative binding of the AR. Furthermore, ov-cGRE efficiently mediated androgen regulation of the thymidine kinase promoter. A single base modification in half-site 2 or 3 in GRE A allowed the binding of the AR as one or two dimers respectively, and restored transcriptional activation by androgens only in the latter case. Thus the poor affinity of the AR for half-sites 2 and 3 prevented its binding to GRE A, indicating that the overlapping GRE A sequence of the cAspAT gene promoter discriminates a glucocorticoid-mediated from an androgen-mediated response.

2007 ◽  
Vol 282 (38) ◽  
pp. 27702-27712 ◽  
Author(s):  
Takeshi Sato ◽  
Kiyoshi Furukawa

Malignant transformation is associated with increased gene expression of β-1,4-galactosyltransferase (β-1,4-GalT) V, which contributes to the biosynthesis of highly branched N-linked oligosaccharides characteristic of cancer cells. Our previous study showed that expression of the human β-1,4-GalT V gene is regulated by Sp1 (Sato, T., and Furukawa, K. (2004) J. Biol. Chem. 279, 39574–39583), and a subsequent study showed that the gene expression is also activated by Ets-1, a product of the oncogene (Sato, T., and Furukawa, K. (2005) Glycoconj. J. 22, 365). Herein we report the mechanism of β-1,4-GalT V gene activation by these transcription factors. The gene expression and promoter activity of β-1,4-GalT V increased when the ets-1 cDNA was transfected into A549 cells, which contain a small amount of Ets-1, but decreased dramatically when the dominant-negative ets-1 cDNA was transfected into HepG2 cells, which contain a large amount of Ets-1. Luciferase assays using deletion constructs of the β-1,4-GalT V gene promoter showed that promoter region –116 to +22 is critical for the transcriptional activation of the gene by Ets-1. Despite the presence of one Ets-1-binding site, which overlapped the Sp1-binding site, electrophoretic mobility shift assays showed that the region bound preferentially to Sp1 rather than to Ets-1. To solve this problem, we examined the transcriptional regulation of the human Sp1 gene by Ets-1 and found that the gene expression and promoter activity of Sp1 are regulated by Ets-1 in cancer cells. Functional analyses of two Ets-1-binding sites in the Sp1 gene promoter showed that only Ets-1-binding site –413 to –404 is involved in the activation of the gene by Ets-1. These results indicate that Ets-1 enhances expression of the β-1,4-GalT V gene through activation of the Sp1 gene in cancer cells.


2005 ◽  
Vol 19 (3) ◽  
pp. 759-770 ◽  
Author(s):  
Beate Ritz-Laser ◽  
Aline Mamin ◽  
Thierry Brun ◽  
Isabelle Avril ◽  
Valérie M. Schwitzgebel ◽  
...  

Abstract Gene inactivation studies have shown that members of the Gata family of transcription factors are critical for endoderm development throughout evolution. We show here that Gata-4 and/or Gata-6 are not only expressed in the adult exocrine pancreas but also in glucagonoma and insulinoma cell lines, whereas Gata-5 is restricted to the exocrine pancreas. During pancreas development, Gata-4 is expressed already at embryonic d 10.5 and colocalizes with early glucagon+ cells at embryonic d 12.5. Gata-4 was able to transactivate the glucagon gene both in heterologous BHK-21 (nonislet Syrian baby hamster kidney) and in glucagon-producing InR1G9 cells. Using gel-mobility shift assays, we identified a complex formed with nuclear extracts from InR1G9 cells on the G5 control element (−140 to −169) of the glucagon gene promoter as Gata-4. Mutation of the GATA binding site on G5 abrogated the transcriptional activation mediated by Gata-4 and reduced basal glucagon gene promoter activity in glucagon-producing cells by 55%. Furthermore, Gata-4 acted more than additively with Forkhead box A (hepatic nuclear factor-3) to trans-activate the glucagon gene promoter. We conclude that, besides its role in endoderm differentiation, Gata-4 might be implicated in the regulation of glucagon gene expression in the fetal pancreas and that Gata activity itself may be modulated by interactions with different cofactors.


1999 ◽  
Vol 13 (8) ◽  
pp. 1373-1387 ◽  
Author(s):  
Weili Wang ◽  
Lian Dong ◽  
Brad Saville ◽  
Stephen Safe

Abstract 17β-Estradiol (E2) stimulated proliferation and DNA synthesis in MCF-7 human breast cancer cells, and this was accompanied by induction of E2F1 mRNA and protein levels. Analysis of the E2F1 gene promoter showed that the −146 to− 54 region was required for E2-responsiveness in transient transfection assays, and subsequent deletion/mutation analysis showed that a single upstream GC-rich and two downstream CCAAT-binding sites were required for transactivation by E2. Gel mobility shift assays with multiple oligonucleotides and protein antibodies (for supershifts) showed that the −146 to −54 region of the E2F1 gene promoter bound Sp1 and NF-Y proteins in MCF-7 cells. The estrogen receptor (ER) protein enhanced Sp1 interactions with upstream GC-rich sites, and interactions of ER, Sp1, and ER/Sp1 with downstream DNA bound-NF-Y was investigated by kinetic analysis for protein-DNA binding (on- and off-rates), coimmunoprecipitation, and pulldown assays using wild-type and truncated glutathione S-transferase (GST)-Sp1 chimeric proteins. The results showed that Sp1 protein enhanced the Bmax of NF-Y-DNA binding by more than 5-fold (on-rate); in addition, the Sp1-enhanced NF-Y-DNA complex was further stabilized by coincubation with ER and the rate of dissociation (t1/2) was decreased by approximately 50%. Sp1 antibodies immunoprecipitated [35S]NF-YA after coincubation with unlabeled Sp1 protein. Thus, transcriptional activation of E2F1 gene expression in MCF-7 cells by E2 is regulated by multiprotein ER/Sp1-NF-Y interactions at GC-rich and two CCAAT elements in the proximal region of the E2F1 gene promoter. This represents a unique trans-acting protein complex in which ligand-dependent transactivation by the ER is independent of direct ER interactions with promoter elements.


1990 ◽  
Vol 10 (10) ◽  
pp. 5532-5535 ◽  
Author(s):  
C Abate ◽  
D Luk ◽  
E Gagne ◽  
R G Roeder ◽  
T Curran

The products of c-fos and c-jun (Fos and Jun) function in gene regulation by interacting with the AP-1 binding site. Here we have examined the contribution of Fos and Jun toward transcriptional activity by using Fos and Jun polypeptides purified from Escherichia coli. Fos contained a transcriptional activation domain as well as a region which exerted a negative influence on transcriptional activity in vitro. Moreover, distinct activation domains in both Fos and Jun functioned cooperatively in transcriptional stimulation. Thus, regulation of gene expression by Fos and Jun results from an integration of several functional domains in a bimolecular complex.


1996 ◽  
Vol 271 (6) ◽  
pp. L963-L971 ◽  
Author(s):  
M. A. Fiedler ◽  
K. Wernke-Dollries ◽  
J. M. Stark

Previous studies demonstrated that respiratory syncytial virus (RSV) infection of A549 cells induced interleukin (IL)-8 gene expression and protein release from the cells as early as 2 h after treatment [M. A. Fiedler, K. Wernke-Dollries, and J. M. Stark. Am. J. Physiol. 269 (Lung Cell. Mol. Physiol. 13): L865-L872, 1995; J. G. Mastronarde, M. M. Monick, and G. W. Hunninghake. Am. J. Respir. Cell Mol. Biol. 13: 237-244, 1995]. Furthermore, the effects of RSV at the 2-h time point were not dependent on viral replication. The studies reported here were designed to test the hypothesis that active and inactive RSV induce IL-8 gene expression in A549 cells at the 2-h time point by a mechanism dependent on the activation of the nuclear transcription factor NF-kappa B Northern blot analysis indicated that IL-8 gene expression occurred independent of protein synthesis 2 h after A549 cells were treated with RSV. Analysis of nuclear extracts from RSV-treated A549 cells by electrophoretic mobility shift assays demonstrated that NF-kappa B was activated as early as 15 min after RSV was added to the cells and remained activated for at least 90 min. In contrast, baseline levels of NF-IL-6 and activator protein-1 (AP-1) did not change over this period of time. Deoxyribonuclease footprint analysis of a portion of the 5'-flanking region of the IL-8 gene demonstrated two potential regions for transcription factor binding, which corresponded to the potential AP-1 binding site, and potential NF-IL-6 and NF-kappa B binding sites. Mutational analysis of the 200-bp 5'-untranslated region of the IL-8 gene demonstrated that activation of NF-kappa B and NF-IL-6 were required for RSV-induced transcriptional activation of the IL-8 gene.


2021 ◽  
Author(s):  
Sara Artigas-Jerónimo ◽  
Margarita Villar ◽  
Agustín Estrada-Peña ◽  
Adrián Velázquez-Campoy ◽  
Pilar Alberdi ◽  
...  

The Akirin family of transcription cofactors are involved throughout the metazoan in the regulation of different biological processes such as immunity, interdigital regression, muscle and neural development. Akirin do not have catalytic or DNA-binding capability and exert its regulatory function primarily through interacting proteins such as transcription factors, chromatin remodelers, and RNA-associated proteins. In this study, we focused on the human Akirin2 regulome and interactome in neutrophil-like model human Caucasian promyelocytic leukemia HL60 cells. Our hypothesis is that metazoan evolved to have Akirin2 functional complements and different Akirin2-mediated mechanisms for the regulation of gene expression. To address this hypothesis, experiments were conducted using transcriptomics, proteomics and systems biology approaches in akirin2 knockdown and wildtype HL60 cells to characterize Akirin2 gene/protein targets, functional complements and to provide evidence of different mechanisms that may be involved in Akirin2-mediated regulation of gene expression. The results revealed Akirin2 gene/protein targets in multiple biological processes with higher representation of immunity and identified immune response genes as candidate Akirin2 functional complements. In addition to linking chromatin remodelers with transcriptional activation, Akirin2 also interacts with histone H3.1 for regulation of gene expression.


2000 ◽  
Vol 350 (1) ◽  
pp. 123 ◽  
Author(s):  
Charbel MASSAAD ◽  
Michèle GARLATTI ◽  
Elizabeth M. WILSON ◽  
Françoise CADEPOND ◽  
Robert BAROUKI

Blood ◽  
1998 ◽  
Vol 92 (8) ◽  
pp. 2924-2933 ◽  
Author(s):  
Tohru Ikuta ◽  
Yuet Wai Kan ◽  
Paul S. Swerdlow ◽  
Douglas V. Faller ◽  
Susan P. Perrine

Abstract The mechanisms by which pharmacologic agents stimulate γ-globin gene expression in β-globin disorders has not been fully established at the molecular level. In studies described here, nucleated erythroblasts were isolated from patients with β-globin disorders before and with butyrate therapy, and globin biosynthesis, mRNA, and protein-DNA interactions were examined. Expression of γ-globin mRNA increased twofold to sixfold above baseline with butyrate therapy in 7 of 8 patients studied. A 15% to 50% increase in γ-globin protein synthetic levels above baseline γ globin ratios and a relative decrease in β-globin biosynthesis were observed in responsive patients. Extensive new in vivo footprints were detected in erythroblasts of responsive patients in four regions of the γ-globin gene promoter, designated butyrate-response elements gamma 1-4 (BRE-G1-4). Electrophoretic mobility shift assays using BRE-G1 sequences as a probe demonstrated that new binding of two erythroid-specific proteins and one ubiquitous protein, CP2, occurred with treatment in the responsive patients and did not occur in the nonresponder. The BRE-G1 sequence conferred butyrate inducibility in reporter gene assays. These in vivo protein-DNA interactions in human erythroblasts in which γ-globin gene expression is being altered strongly suggest that nuclear protein binding, including CP2, to the BRE-G1 region of the γ-globin gene promoter mediates butyrate activity on γ-globin gene expression. © 1998 by The American Society of Hematology.


2019 ◽  
Vol 78 ◽  
pp. 01002
Author(s):  
Zhou-Tong Dai ◽  
Ao Yao ◽  
Yuan Xiang ◽  
Jia Peng Li ◽  
Wei Guo ◽  
...  

CD44, cluster of differentiation 44 is a typical marker of stem cells. At present, it has been found that CD44 is prevalent in various human malignant tumors, but its expression regulation mechanism is still not clear. The initiation of gene expression, the modification of RNA levels, and the regulation of protein levels are the main factors affecting the expression level of genes, and the most critical one is the regulation of gene expression by signaling pathways. Up to now, there has been no report on the role of MKL-1 in the cloning of the cd44 promoter. Therefore, this study intends to clone the cd44 gene promoter, construct its luciferase reporter gene vector, transfect the MKL-1 overexpression vector, and analyze how it affects transcriptional activity, in order to further study the expression regulation of cd44. The mechanism provides a powerful tool in the future.


Endocrinology ◽  
2007 ◽  
Vol 148 (8) ◽  
pp. 3932-3940 ◽  
Author(s):  
Hongyan Dong ◽  
Carole L. Yauk ◽  
Andrew Williams ◽  
Alice Lee ◽  
George R. Douglas ◽  
...  

The molecular mechanisms involved in the response of developing mice to disruptions in maternal thyroid hormone (TH) homeostasis are poorly characterized. We used DNA microarrays to examine a broad spectrum of genes from the livers of mice rendered hypothyroid by treating pregnant mice from gestational d 13 to postnatal d 15 with 6-propyl-2-thiouracil in drinking water. Twenty-four individuals (one male and one female pup from six litters of control or 6-propyl-2-thiouracil treatment groups, respectively) were profiled using Agilent oligonucleotide microarrays. MAANOVA identified 96 differentially expressed genes (false discovery rate adjusted P < 0.1 and fold change > 2 in at least one gender). Of these, 72 genes encode proteins of known function, 15 of which had previously been identified as regulated by TH. Pathway analysis revealed these genes are involved in metabolism, development, cell proliferation, apoptosis, and signal transduction. An immediate-early response gene, Nr4a1 (nuclear receptor subfamily 4, group A, member 1), was up-regulated by 3-fold in hypothyroid juvenile mouse liver; treatment of HepG2 cells with T3 resulted in down-regulation of Nr4a1. A potential thyroid response element −1218 to −1188 bp upstream of the promoter region of Nr4a1 was identified and demonstrated to bind TH receptor (TR)-α and TRβ. Point mutation or deletion of the sequence containing the potential Nr4a1-thyroid response element in transient gene expression studies resulted in both higher basal expression and loss of T3 regulatory capacity, suggesting that this site is responsible for the negative regulation of gene expression by TR and TH.


Sign in / Sign up

Export Citation Format

Share Document