scholarly journals AMPK activation by A-769662 and 991 does not affect catecholamine-induced lipolysis in human adipocytes

2018 ◽  
Vol 315 (5) ◽  
pp. E1075-E1085 ◽  
Author(s):  
Franziska Kopietz ◽  
Christine Berggreen ◽  
Sara Larsson ◽  
Johanna Säll ◽  
Mikael Ekelund ◽  
...  

Activation of AMP-activated protein kinase (AMPK) is considered an attractive strategy for the treatment of type 2 diabetes. Favorable metabolic effects of AMPK activation are mainly observed in skeletal muscle and liver tissue, whereas the effects in human adipose tissue are only poorly understood. Previous studies, which largely employed the AMPK activator 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR), suggest an antilipolytic role of AMPK in adipocytes. The aim of this work was to reinvestigate the role of AMPK in the regulation of lipolysis, using the novel allosteric small-molecule AMPK activators A-769662 and 991, with a focus on human adipocytes. For this purpose, human primary subcutaneous adipocytes were treated with A-769662, 991, or AICAR, as a control, before being stimulated with isoproterenol. AMPK activity status, glycerol release, and the phosphorylation of hormone-sensitive lipase (HSL), a key regulator of lipolysis, were then monitored. Our results show that both A-769662 and 991 activated AMPK to a level that was similar to, or greater than, that induced by AICAR. In contrast to AICAR, which as expected was antilipolytic, neither A-769662 nor 991 affected lipolysis in human adipocytes, although 991 treatment led to altered HSL phosphorylation. Furthermore, we suggest that HSL Ser660 is an important regulator of lipolytic activity in human adipocytes. These data suggest that the antilipolytic effect observed with AICAR in previous studies is, at least to some extent, AMPK independent.

2004 ◽  
Vol 63 (2) ◽  
pp. 205-210 ◽  
Author(s):  
Nobuharu Fujii ◽  
William G. Aschenbach ◽  
Nicolas Musi ◽  
Michael F. Hirshman ◽  
Laurie J. Goodyear

The AMP-activated protein kinase (AMPK) is an energy-sensing enzyme that is activated during exercise and muscle contraction as a result of acute decreases in ATP:AMP and phosphocreatine:creatine. Physical exercise increases muscle glucose uptake, enhances insulin sensitivity and leads to fatty acid oxidation in muscle. An important issue in muscle biology is to understand whether AMPK plays a role in mediating these metabolic processes. AMPK has also been implicated in regulating gene transcription and, therefore, may function in some of the cellular adaptations to training exercise. Recent studies have shown that the magnitude of AMPK activation and associated metabolic responses are affected by factors such as glycogen content, exercise training and fibre type. There have also been conflicting reports as to whether AMPK activity is necessary for contraction-stimulated glucose transport. Thus, during the next several years considerably more research will be necessary in order to fully understand the role of AMPK in regulating glucose transport in skeletal muscle.


2005 ◽  
Vol 288 (3) ◽  
pp. E592-E598 ◽  
Author(s):  
Marcella A. Raney ◽  
Alice J. Yee ◽  
Mark K. Todd ◽  
Lorraine P. Turcotte

To determine the role of AMP-activated protein kinase (AMPK) activation on the regulation of fatty acid (FA) uptake and oxidation, we perfused rat hindquarters with 6 mM glucose, 10 μU/ml insulin, 550 μM palmitate, and [14C]palmitate during rest (R) or electrical stimulation (ES), inducing low-intensity (0.1 Hz) muscle contraction either with or without 2 mM 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR). AICAR treatment significantly increased glucose and FA uptake during R ( P < 0.05) but had no effect on either variable during ES ( P > 0.05). AICAR treatment significantly increased total FA oxidation ( P < 0.05) during both R (0.38 ± 0.11 vs. 0.89 ± 0.1 nmol·min−1·g−1) and ES (0.73 ± 0.11 vs. 2.01 ± 0.1 nmol·min−1·g−1), which was paralleled in both conditions by a significant increase and significant decrease in AMPK and acetyl-CoA carboxylase (ACC) activity, respectively ( P < 0.05). Low-intensity muscle contraction increased glucose uptake, FA uptake, and total FA oxidation ( P < 0.05) despite no change in AMPK (950.5 ± 35.9 vs. 1,067.7 ± 58.8 nmol·min−1·g−1) or ACC (51.2 ± 6.7 vs. 55.7 ± 2.0 nmol·min−1·g−1) activity from R to ES ( P > 0.05). When contraction and AICAR treatment were combined, the AICAR-induced increase in AMPK activity (34%) did not account for the synergistic increase in FA oxidation (175%) observed under similar conditions. These results suggest that while AMPK-dependent mechanisms may regulate FA uptake and FA oxidation at rest, AMPK-independent mechanisms predominate during low-intensity muscle contraction.


Antioxidants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 776
Author(s):  
Elzbieta Janda ◽  
Concetta Martino ◽  
Concetta Riillo ◽  
Maddalena Parafati ◽  
Antonella Lascala ◽  
...  

Dietary flavonoids stimulate autophagy and prevent liver dysfunction, but the upstream signaling pathways triggered by these compounds are not well understood. Certain polyphenols bind directly to NRH-quinone oxidoreductase 2 (NQO2) and inhibit its activity. NQO2 is highly expressed in the liver, where it participates in quinone metabolism, but recent evidence indicates that it may also play a role in the regulation of oxidative stress and autophagy. Here, we addressed a potential role of NQO2 in autophagy induction by flavonoids. The pro-autophagic activity of seven flavonoid aglycons correlated perfectly with their ability to inhibit NQO2 activity, and flavones such as apigenin and luteolin showed the strongest activity in all assays. The silencing of NQO2 strongly reduced flavone-induced autophagic flux, although it increased basal LC3-II levels in HepG2 cells. Both flavones induced AMP kinase (AMPK) activation, while its reduction by AMPK beta (PRKAB1) silencing inhibited flavone-induced autophagy. Interestingly, the depletion of NQO2 levels by siRNA increased the basal AMPK phosphorylation but abrogated its further increase by apigenin. Thus, NQO2 contributes to the negative regulation of AMPK activity and autophagy, while its targeting by flavones releases pro-autophagic signals. These findings imply that NQO2 works as a flavone receptor mediating autophagy and may contribute to other hepatic effects of flavonoids.


2004 ◽  
Vol 287 (4) ◽  
pp. E739-E743 ◽  
Author(s):  
Burton F. Holmes ◽  
David B. Lang ◽  
Morris J. Birnbaum ◽  
James Mu ◽  
G. Lynis Dohm

An acute bout of exercise increases muscle GLUT4 mRNA in mice, and denervation decreases GLUT4 mRNA. AMP-activated protein kinase (AMPK) activity in skeletal muscle is also increased by exercise, and GLUT4 mRNA is increased in mouse skeletal muscle after treatment with AMPK activator 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside(AICAR). These findings suggest that AMPK activation might be responsible for the increase in GLUT4 mRNA expression in response to exercise. To investigate the role of AMPK in GLUT4 regulation in response to exercise and denervation, transgenic mice with a mutated AMPK α-subunit (dominant negative; AMPK-DN) were studied. GLUT4 did not increase in AMPK-DN mice that were treated with AICAR, demonstrating that muscle AMPK is inactive. Exercise (two 3-h bouts of treadmill running separated by 1 h of rest) increased GLUT4 mRNA in both wild-type and AMPK-DN mice. Likewise, denervation decreased GLUT4 mRNA in both wild-type and AMPK-DN mice. GLUT4 mRNA was also increased by AICAR treatment in both the innervated and denervated muscles. These data demonstrate that AMPK is not required for the response of GLUT4 mRNA to exercise and denervation.


2008 ◽  
Vol 294 (1) ◽  
pp. C126-C135 ◽  
Author(s):  
Dan Zheng ◽  
Anjana Perianayagam ◽  
Donna H. Lee ◽  
M. Douglas Brannan ◽  
Li E. Yang ◽  
...  

AMP-activated protein kinase (AMPK), activated by an increase in intracellular AMP-to-ATP ratio, stimulates pathways that can restore ATP levels. We tested the hypothesis that AMPK activation influences extracellular fluid (ECF) K+ homeostasis. In conscious rats, AMPK was activated with 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR) infusion: 38.4 mg/kg bolus then 4 mg·kg−1·min−1 infusion. Plasma [K+] and [glucose] both dropped at 1 h of AICAR infusion and [K+] dropped to 3.3 ± 0.04 mM by 3 h, linearly related to the increase in muscle AMPK phosphorylation. AICAR treatment did not increase urinary K+ excretion. AICAR lowered [K+] whether plasma [K+] was chronically elevated or lowered. The K+ infusion rate needed to maintain baseline plasma [K+] reached 15.7 ± 1.3 μmol K+·kg−1·min−1 between 120 and 180 min AICAR infusion. In mice expressing a dominant inhibitory form of AMPK in the muscle (Tg-KD1), baseline [K+] was not different from controls (4.2 ± 0.1 mM), but the fall in plasma [K+] in response to AICAR (0.25 g/kg) was blunted: [K+] fell to 3.6 ± 0.1 in controls and to 3.9 ± 0.1 mM in Tg-KD1, suggesting that ECF K+ redistributes, at least in part, to muscle ICF. In summary, these findings illustrate that activation of AMPK activity with AICAR provokes a significant fall in plasma [K+] and suggest a novel mechanism for redistributing K+ from ECF to ICF.


2000 ◽  
Vol 20 (18) ◽  
pp. 6704-6711 ◽  
Author(s):  
Angela Woods ◽  
Dalila Azzout-Marniche ◽  
Marc Foretz ◽  
Silvie C. Stein ◽  
Patricia Lemarchand ◽  
...  

ABSTRACT In the liver, glucose induces the expression of a number of genes involved in glucose and lipid metabolism, e.g., those encoding L-type pyruvate kinase and fatty acid synthase. Recent evidence has indicated a role for the AMP-activated protein kinase (AMPK) in the inhibition of glucose-activated gene expression in hepatocytes. It remains unclear, however, whether AMPK is involved in the glucose induction of these genes. In order to study further the role of AMPK in regulating gene expression, we have generated two mutant forms of AMPK. One of these (α1312) acts as a constitutively active kinase, while the other (α1DN) acts as a dominant negative inhibitor of endogenous AMPK. We have used adenovirus-mediated gene transfer to express these mutants in primary rat hepatocytes in culture in order to determine their effect on AMPK activity and the transcription of glucose-activated genes. Expression of α1312 increased AMPK activity in hepatocytes and blocked completely the induction of a number of glucose-activated genes in response to 25 mM glucose. This effect is similar to that observed following activation of AMPK by 5-amino-imidazolecarboxamide riboside. Expression of α1DN markedly inhibited both basal and stimulated activity of endogenous AMPK but had no effect on the transcription of glucose-activated genes. Our results suggest that AMPK is involved in the inhibition of glucose-activated gene expression but not in the induction pathway. This study demonstrates that the two mutants we have described will provide valuable tools for studying the wider physiological role of AMPK.


2019 ◽  
Vol 60 (5) ◽  
pp. 937-952 ◽  
Author(s):  
Anne-Emilie Declèves ◽  
Anna V. Mathew ◽  
Aaron M. Armando ◽  
Xianlin Han ◽  
Edward A. Dennis ◽  
...  

High-fat diet (HFD) causes renal lipotoxicity that is ameliorated with AMP-activated protein kinase (AMPK) activation. Although bioactive eicosanoids increase with HFD and are essential in regulation of renal disease, their role in the inflammatory response to HFD-induced kidney disease and their modulation by AMPK activation remain unexplored. In a mouse model, we explored the effects of HFD on eicosanoid synthesis and the role of AMPK activation in ameliorating these changes. We used targeted lipidomic profiling with quantitative MS to determine PUFA and eicosanoid content in kidneys, urine, and renal arterial and venous circulation. HFD increased phospholipase expression as well as the total and free pro-inflammatory arachidonic acid (AA) and anti-inflammatory DHA in kidneys. Consistent with the parent PUFA levels, the AA- and DHA-derived lipoxygenase (LOX), cytochrome P450, and nonenzymatic degradation (NE) metabolites increased in kidneys with HFD, while EPA-derived LOX and NE metabolites decreased. Conversely, treatment with 5-aminoimidazole-4-carboxamide-1-β-D-furanosyl 5′-monophosphate (AICAR), an AMPK activator, reduced the free AA and DHA content and the DHA-derived metabolites in kidney. Interestingly, kidney and circulating AA, AA metabolites, EPA-derived LOX, and NE metabolites are increased with HFD; whereas, DHA metabolites are increased in kidney in contrast to their decreased circulating levels with HFD. Together, these changes showcase HFD-induced pro- and anti-inflammatory eicosanoid dysregulation and highlight the role of AMPK in correcting HFD-induced dysregulated eicosanoid pathways.


2011 ◽  
Vol 301 (2) ◽  
pp. R473-R483 ◽  
Author(s):  
Jake D. Bauwens ◽  
Eric G. Schmuck ◽  
Christopher R. Lindholm ◽  
Rebecca L. Ertel ◽  
Jacob D. Mulligan ◽  
...  

Recent studies indicate that a substantial amount of metabolically active brown adipose tissue (BAT) exists in adult humans. Given the unique ability of BAT to convert calories to heat, there is intense interest in understanding the regulation of BAT metabolism in hopes that its manipulation might be an effective way of expending excess calories. Because of the established role of AMP-activated protein kinase (AMPK) as a “metabolic master switch” and its extremely high levels of activity in BAT, it was hypothesized that AMPK might play a central role in regulating BAT metabolism. To test this hypothesis, whole body α1-AMPK−/− (knockout) and wild-type mice were studied 1) under control (room temperature) conditions, 2) during chronic cold exposure (14 days at 4°C), and 3) during acute nonshivering thermogenesis (injection of a β3-adrenergic agonist). Under control conditions, loss of α1-AMPK resulted in downregulation of two important prothermogenic genes in BAT, thyrotropin-releasing hormone (−9.2-fold) and ciliary neurotrophic factor (−8.7-fold). Additionally, it caused significant upregulation of α2-AMPK activity in BAT, white adipose tissue, and liver, but not cardiac or skeletal muscle. During acute nonshivering thermogenesis and chronic cold exposure, body temperature was indistinguishable in the α1-AMPK−/− and wild-type mice. Similarly, the degree of cold-induced hyperphagia was identical in the two groups. We conclude that α1-AMPK does not play an obligatory role in these processes and that adaptations to chronic loss of α1-AMPK are able to compensate for its loss via several mechanisms.


Endocrinology ◽  
2007 ◽  
Vol 148 (3) ◽  
pp. 1367-1375 ◽  
Author(s):  
Thierry Alquier ◽  
Junji Kawashima ◽  
Youki Tsuji ◽  
Barbara B. Kahn

Antecedent hypoglycemia blunts counterregulatory responses that normally restore glycemia, a phenomenon known as hypoglycemia-associated autonomic failure (HAAF). The mechanisms leading to impaired counterregulatory responses are largely unknown. Hypothalamic AMP-activated protein kinase (AMPK) acts as a glucose sensor. To determine whether failure to activate AMPK could be involved in the etiology of HAAF, we developed a model of HAAF using repetitive intracerebroventricular (icv) injection of 2-deoxy-d-glucose (2DG) resulting in transient neuroglucopenia in normal rats. Ten minutes after a single icv injection of 2DG, both α1- and α2-AMPK activities were increased 30–50% in arcuate and ventromedial/dorsomedial hypothalamus but not in other hypothalamic regions, hindbrain, or cortex. Increased AMPK activity persisted in arcuate hypothalamus at 60 min after 2DG injection when serum glucagon and corticosterone levels were increased 2.5- to 3.4-fold. When 2DG was injected icv daily for 4 d, hypothalamic α1- and α2-AMPK responses were markedly blunted in arcuate hypothalamus, and α1-AMPK was also blunted in mediobasal hypothalamus 10 min after 2DG on d 4. Both AMPK isoforms were activated normally in arcuate hypothalamus at 60 min. Counterregulatory hormone responses were impaired by recurrent neuroglucopenia and were partially restored by icv injection of 5-aminoimidazole-4-carboxamide 1-β-d-ribofuranoside, an AMPK activator, before 2DG. Glycogen content increased 2-fold in hypothalamus after recurrent neuroglucopenia, suggesting that glycogen supercompensation could be involved in down-regulating the AMPK glucose-sensing pathway in HAAF. Thus, activation of hypothalamic AMPK may be important for the full counterregulatory hormone response to neuroglucopenia. Furthermore, impaired or delayed AMPK activation in specific hypothalamic regions may play a critical role in the etiology of HAAF.


2007 ◽  
Vol 102 (3) ◽  
pp. 1007-1013 ◽  
Author(s):  
Licht Miyamoto ◽  
Taro Toyoda ◽  
Tatsuya Hayashi ◽  
Shin Yonemitsu ◽  
Masako Nakano ◽  
...  

5′-AMP-activated protein kinase (AMPK) has been implicated in glycogen metabolism in skeletal muscle. However, the physiological relevance of increased AMPK activity during exercise has not been fully clarified. This study was performed to determine the direct effects of acute AMPK activation on muscle glycogen regulation. For this purpose, we used an isolated rat muscle preparation and pharmacologically activated AMPK with 5-aminoimidazole-4-carboxamide-1-β-d-ribonucleoside (AICAR). Tetanic contraction in vitro markedly activated the α1- and α2-isoforms of AMPK, with a corresponding increase in the rate of 3- O-methylglucose uptake. Incubation with AICAR elicited similar enhancement of AMPK activity and 3- O-methylglucose uptake in rat epitrochlearis muscle. In contrast, whereas contraction stimulated glycogen synthase (GS), AICAR treatment decreased GS activity. Insulin-stimulated GS activity also decreased after AICAR treatment. Whereas contraction activated glycogen phosphorylase (GP), AICAR did not alter GP activity. The muscle glycogen content decreased in response to contraction but was unchanged by AICAR. Lactate release was markedly increased when muscles were stimulated with AICAR in buffer containing glucose, indicating that the glucose taken up into the muscle was catabolized via glycolysis. Our results suggest that AMPK does not mediate contraction-stimulated glycogen synthesis or glycogenolysis in skeletal muscle and also that acute AMPK activation leads to an increased glycolytic flux by antagonizing contraction-stimulated glycogen synthesis.


Sign in / Sign up

Export Citation Format

Share Document