Intracellular and plasma membrane-initiated pathways involved in the [Ca2+]i elevations induced by iodothyronines (T3 and T2) in pituitary GH3 cells

2012 ◽  
Vol 302 (11) ◽  
pp. E1419-E1430 ◽  
Author(s):  
Adelaide Del Viscovo ◽  
Agnese Secondo ◽  
Alba Esposito ◽  
Fernando Goglia ◽  
Maria Moreno ◽  
...  

The role of 3,5,3′-triiodo-l-thyronine (T3) and its metabolite 3,5-diiodo-l-thyronine (T2) in modulating the intracellular Ca2+ concentration ([Ca2+]i) and endogenous nitric oxide (NO) synthesis was evaluated in pituitary GH3 cells in the absence or presence of extracellular Ca2+. When applied in Ca2+-free solution, T2 and T3 increased [Ca2+]i, in a dose-dependent way, and NO levels. Inhibition of neuronal NO synthase by NG-nitro-l-arginine methyl ester and l- n5-(1-iminoethyl)ornithine hydrochloride significantly reduced the [Ca2+]i increase induced by T2 and T3. However, while depletion of inositol trisphosphate-dependent Ca2+ stores did not interfere with the T2- and T3-induced [Ca2+]i increases, the inhibition of phosphatidylinositol 3-kinase by LY-294002 and the dominant negative form of Akt mutated at the ATP binding site prevented these effects. Furthermore, the mitochondrial protonophore carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone prevented the increases in both [Ca2+]i and NO elicited by T2 or T3. Interestingly, rotenone blocked the early [Ca2+]i increases elicited by T2 and T3, while antimycin prevented only that elicited by T3. Inhibition of mitochondrial Na+/Ca2+ exchanger by CGP37157 significantly reduced the [Ca2+]i increases induced by T2 and T3. In the presence of extracellular calcium (1.2 mM), under carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone, T2 and T3 increased both [Ca2+]i and intracellular Na+ concentration; nimodipine reduced the [Ca2+]i increases elicited by T2 and T3, but inhibition of NO synthase and blockade of the Na+/H+ pump by 5-( N-ethyl- N-isopropyl)amiloride prevented only that elicited by T3; and CB-DMB, bisindolylmaleimide, and LY-294002 (inhibitors of the Na+/Ca2+ exchanger, PKC, and phosphatidylinositol 3-kinase, respectively) failed to modify the T2- and T3-induced effects. Collectively, the present results suggest that T2 and T3 exert short-term nongenomic effects on intracellular calcium and NO by modulating plasma membrane and mitochondrial pathways that differ between these iodothyronines.

2021 ◽  
Author(s):  
Max Gass ◽  
Sarah Borkowsky ◽  
Marie-Luise Lotz ◽  
Rita Schroeter ◽  
Pavel Nedvetsky ◽  
...  

Drosophila nephrocytes are an emerging model system for mammalian podocytes and podocyte-associated diseases. Like podocytes, nephrocytes exhibit characteristics of epithelial cells, but the role of phospholipids in polarization of these cells is yet unclear. In epithelia phosphatidylinositol(4,5)bisphosphate (PI(4,5)P2) and phosphatidylinositol(3,4,5)-trisphosphate (PI(3,4,5)P3) are asymmetrically distributed in the plasma membrane and determine apical-basal polarity. Here we demonstrate that both phospholipids are present in the plasma membrane of nephrocytes, but only PI(4,5)P2 accumulates at slit diaphragms. Knockdown of Skittles, a phosphatidylinositol(4)phosphate 5-kinase, which produces PI(4,5)P2, abolished slit diaphragm formation and led to strongly reduced endocytosis. Notably, reduction in PI(3,4,5)P3 by overexpression of PTEN or expression of a dominant-negative phosphatidylinositol-3-Kinase did not affect nephrocyte function, whereas enhanced formation of PI(3,4,5)P3 by constitutively active phosphatidylinositol-3-Kinase resulted in strong slit diaphragm and endocytosis defects by ectopic activation of the Akt/mTOR pathway. Thus, PI(4,5)P2 but not PI(3,4,5)P3 is essential for slit diaphragm formation and nephrocyte function. However, PI(3,4,5)P3 has to be tightly controlled to ensure nephrocyte development.


2002 ◽  
Vol 13 (4) ◽  
pp. 1252-1262 ◽  
Author(s):  
Dale J. Powner ◽  
Matthew N. Hodgkin ◽  
Michael J.O. Wakelam

Phospholipase D (PLD) activity can be detected in response to many agonists in most cell types; however, the pathway from receptor occupation to enzyme activation remains unclear. In vitro PLD1b activity is phosphatidylinositol 4,5-bisphosphate dependent via an N-terminal PH domain and is stimulated by Rho, ARF, and PKC family proteins, combinations of which cooperatively increase this activity. Here we provide the first evidence for the in vivo regulation of PLD1b at the molecular level. Antigen stimulation of RBL-2H3 cells induces the colocalization of PLD1b with Rac1, ARF6, and PKCα at the plasma membrane in actin-rich structures, simultaneously with cooperatively increasing PLD activity. Activation is both specific and direct because dominant negative mutants of Rac1 and ARF6 inhibit stimulated PLD activity, and surface plasmon resonance reveals that the regulatory proteins bind directly and independently to PLD1b. This also indicates that PLD1b can concurrently interact with a member from each regulator family. Our results show that in contrast to PLD1b's translocation to the plasma membrane, PLD activation is phosphatidylinositol 3-kinase dependent. Therefore, because inactive, dominant negative GTPases do not activate PLD1b, we propose that activation results from phosphatidylinositol 3-kinase–dependent stimulation of Rac1, ARF6, and PKCα.


2021 ◽  
Author(s):  
Maximilian Gass ◽  
Sarah Borkowsky ◽  
Marie-Luise Lotz ◽  
Rita Schröter ◽  
Pavel Nedvetsky ◽  
...  

Abstract Drosophila nephrocytes are an emerging model system for mammalian podocytes and podocyte-associated diseases. Like podocytes, nephrocytes exhibit characteristics of epithelial cells, but the role of phospholipids in polarization of these cells is yet unclear. In epithelia phosphatidylinositol(4,5)bisphosphate (PI(4,5)P2) and phosphatidylinositol(3,4,5)-trisphosphate (PI(3,4,5)P3) are asymmetrically distributed in the plasma membrane and determine apical-basal polarity. Here we demonstrate that both phospholipids are present in the plasma membrane of nephrocytes, but only PI(4,5)P2 accumulates at slit diaphragms. Knockdown of Skittles, a phosphatidylinositol(4)phosphate 5-kinase, which produces PI(4,5)P2, abolished slit diaphragm formation and led to strongly reduced endocytosis. Notably, reduction in PI(3,4,5)P3 by overexpression of PTEN or expression of a dominant-negative phosphatidylinositol-3-Kinase did not affect nephrocyte function, whereas enhanced formation of PI(3,4,5)P3 by constitutively active phosphatidylinositol-3-Kinase resulted in strong slit diaphragm and endocytosis defects by ectopic activation of the Akt/mTOR pathway. Thus, PI(4,5)P2 but not PI(3,4,5)P3 is essential for slit diaphragm formation and nephrocyte function. However, PI(3,4,5)P3 has to be tightly controlled to ensure nephrocyte development.


2000 ◽  
Vol 279 (2) ◽  
pp. E266-E274 ◽  
Author(s):  
Paul G. Drake ◽  
Alejandro Balbis ◽  
Jiong Wu ◽  
John J. M. Bergeron ◽  
Barry I. Posner

Phosphatidylinositol 3-kinase (PI 3-kinase) plays an important role in a variety of hormone and growth factor-mediated intracellular signaling cascades and has been implicated in the regulation of a number of metabolic effects of insulin, including glucose transport and glycogen synthase activation. In the present study we have examined 1) the association of PI 3-kinase with the insulin receptor kinase (IRK) in rat liver and 2) the subcellular distribution of PI 3-kinase-IRK interaction. Insulin treatment promoted a rapid and pronounced recruitment of PI 3-kinase to IRKs located at the plasma membrane, whereas no increase in association with endosomal IRKs was observed. In contrast to IRS-1-associated PI 3-kinase activity, association of PI 3-kinase with the plasma membrane IRK did not augment the specific activity of the lipid kinase. With use of the selective PI 3-kinase inhibitor wortmannin, our data suggest that the cell surface IRK β-subunit is not a substrate for the serine kinase activity of PI 3-kinase. The functional significance for the insulin-stimulated selective recruitment of PI 3-kinase to cell surface IRKs remains to be elucidated.


2000 ◽  
Vol 20 (18) ◽  
pp. 6779-6798 ◽  
Author(s):  
Angel W.-M. Lee ◽  
David J. States

ABSTRACT Colony-stimulating factor 1 (CSF-1) supports the proliferation, survival, and differentiation of bone marrow-derived cells of the monocytic lineage. In the myeloid progenitor 32D cell line expressing CSF-1 receptor (CSF-1R), CSF-1 activation of the extracellular signal-regulated kinase (ERK) pathway is both Ras and phosphatidylinositol 3-kinase (PI3-kinase) dependent. PI3-kinase inhibition did not influence events leading to Ras activation. Using the activity of the PI3-kinase effector, Akt, as readout, studies with dominant-negative and oncogenic Ras failed to place PI3-kinase downstream of Ras. Thus, PI3-kinase appears to act in parallel to Ras. PI3-kinase inhibitors enhanced CSF-1-stimulated A-Raf and c-Raf-1 activities, and dominant-negative A-Raf but not dominant-negative c-Raf-1 reduced CSF-1-provoked ERK activation, suggesting that A-Raf mediates a part of the stimulatory signal from Ras to MEK/ERK, acting in parallel to PI3-kinase. Unexpectedly, a CSF-1R lacking the PI3-kinase binding site (ΔKI) remained capable of activating MEK/ERK in a PI3-kinase-dependent manner. To determine if Src family kinases (SFKs) are involved, we demonstrated that CSF-1 activated Fyn and Lyn in cells expressing wild-type (WT) or ΔKI receptors. Moreover, CSF-1-induced Akt activity in cells expressing ΔKI is SFK dependent since Akt activation was prevented by pharmacological or genetic inhibition of SFK activity. The docking protein Gab2 may link SFK to PI3-kinase. CSF-1 induced Gab2 tyrosyl phosphorylation and association with PI3-kinase in cells expressing WT or ΔKI receptors. However, only in ΔKI cells are these events prevented by PP1. Thus in myeloid progenitors, CSF-1 can activate the PI3-kinase/Akt pathway by at least two mechanisms, one involving direct receptor binding and one involving SFKs.


2001 ◽  
Vol 280 (5) ◽  
pp. H2126-H2135 ◽  
Author(s):  
Yefim Manevich ◽  
Abu Al-Mehdi ◽  
Vladimir Muzykantov ◽  
Aron B. Fisher

Shear stress modulates endothelial physiology, yet the effect(s) of flow cessation is poorly understood. The initial metabolic responses of flow-adapted bovine pulmonary artery endothelial cells to the abrupt cessation of flow (simulated ischemia) was evaluated using a perfusion chamber designed for continuous spectroscopy. Plasma membrane potential, production of reactive O2 species (ROS), and intracellular Ca2+ and nitric oxide (NO) levels were measured with fluorescent probes. Within 15 s after flow cessation, flow-adapted cells, but not cells cultured under static conditions, showed plasma membrane depolarization and an oxidative burst with generation of ROS that was inhibited by diphenyleneiodonium. EGTA-inhibitable elevation of intracellular Ca2+ and NO were observed at ∼30 and 60 s after flow cessation, respectively. NO generation was decreased in the presence of inhibitors of NO synthase and calmodulin. Thus flow-adapted endothelial cells sense the altered hemodynamics associated with flow cessation and respond by plasma membrane depolarization, activation of NADPH oxidase, Ca2+ influx, and activation of Ca2+/calmodulin-dependent NO synthase. This signaling response is unrelated to cellular anoxia.


2006 ◽  
Vol 282 (7) ◽  
pp. 4983-4993 ◽  
Author(s):  
Nandini Ghosh-Choudhury ◽  
Chandi Charan Mandal ◽  
Goutam Ghosh Choudhury

Lovastatin promotes osteoblast differentiation by increasing bone morphogenetic protein-2 (BMP-2) expression. We demonstrate that lovastatin stimulates tyrosine phosphorylation of the p85 regulatory subunit of phosphatidylinositol 3-kinase (PI3K), leading to an increase in its kinase activity in osteoblast cells. Inhibition of PI3K ameliorated expression of the osteogenic markers alkaline phosphatase, type I collagen, osteopontin, and BMP-2. Expression of dominant-negative PI3K and PTEN, an inhibitor of PI3K signaling, significantly attenuated lovastatin-induced transcription of BMP-2. Akt kinase was also activated in a PI3K-dependent manner. However, our data suggest involvement of an additional signaling pathway. Lovastatin-induced Erk1/2 activity contributed to BMP-2 transcription. Inhibition of PI3K abrogated Erk1/2 activity in response to lovastatin, indicating the presence of a signal relay between them. We provide, as a mechanism of this cross-talk, the first evidence that lovastatin stimulates rapid activation of Ras, which associates with and activates PI3K in the plasma membrane, which in turn regulates Akt and Erk1/2 to induce BMP-2 expression for osteoblast differentiation.


2008 ◽  
Vol 19 (7) ◽  
pp. 2718-2728 ◽  
Author(s):  
Irfan J. Lodhi ◽  
Dave Bridges ◽  
Shian-Huey Chiang ◽  
Yanling Zhang ◽  
Alan Cheng ◽  
...  

Phosphatidylinositol 3-phosphate (PI(3)P) plays an important role in insulin-stimulated glucose uptake. Insulin promotes the production of PI(3)P at the plasma membrane by a process dependent on TC10 activation. Here, we report that insulin-stimulated PI(3)P production requires the activation of Rab5, a small GTPase that plays a critical role in phosphoinositide synthesis and turnover. This activation occurs at the plasma membrane and is downstream of TC10. TC10 stimulates Rab5 activity via the recruitment of GAPEX-5, a VPS9 domain–containing guanyl nucleotide exchange factor that forms a complex with TC10. Although overexpression of plasma membrane-localized GAPEX-5 or constitutively active Rab5 promotes PI(3)P formation, knockdown of GAPEX-5 or overexpression of a dominant negative Rab5 mutant blocks the effects of insulin or TC10 on this process. Concomitant with its effect on PI(3)P levels, the knockdown of GAPEX-5 blocks insulin-stimulated Glut4 translocation and glucose uptake. Together, these studies suggest that the TC10/GAPEX-5/Rab5 axis mediates insulin-stimulated production of PI(3)P, which regulates trafficking of Glut4 vesicles.


2001 ◽  
Vol 356 (1) ◽  
pp. 143-149 ◽  
Author(s):  
Mireille CORMONT ◽  
Nadine GAUTIER ◽  
Karine ILC ◽  
Yannick Le MARCHAND-BRUSTEL

The small GTPase Rab4 has been shown to participate in the subcellular distribution of GLUT4 under both basal and insulin-stimulated conditions in adipocytes. In the present work, we have characterized the effect of Rab4 ΔCT, a prenylation-deficient and thus cytosolic form of Rab4, in this process. We show that the expression of Rab4 ΔCT in freshly isolated adipocytes inhibits insulin-induced GLUT4 translocation, but only when this protein is in its GTP-bound active form. Further, it not only blocks the effect of insulin, but also that of a hyperosmotic shock, but does not interfere with the effect of zinc ions on GLUT4 translocation. Rab4 ΔCT was then shown to prevent GLUT4 translocation induced by the expression of an active form of phosphatidylinositol 3-kinase or of protein kinase B, without altering the activities of the enzymes. Our results are consistent with a role of Rab4 ΔCT acting as a dominant negative protein towards Rab4, possibly by binding to Rab4 effectors.


Sign in / Sign up

Export Citation Format

Share Document