scholarly journals Estradiol modulates myosin regulatory light chain phosphorylation and contractility in skeletal muscle of female mice

2016 ◽  
Vol 310 (9) ◽  
pp. E724-E733 ◽  
Author(s):  
Shaojuan Lai ◽  
Brittany C. Collins ◽  
Brett A. Colson ◽  
Georgios Kararigas ◽  
Dawn A. Lowe

Impairment of skeletal muscle function has been associated with changes in ovarian hormones, especially estradiol. To elucidate mechanisms of estradiol on skeletal muscle strength, the hormone's effects on phosphorylation of the myosin regulatory light chain (pRLC) and muscle contractility were investigated, hypothesizing an estradiol-specific beneficial impact. In a skeletal muscle cell line, C2C12, pRLC was increased by 17β-estradiol (E2) in a concentration-dependent manner. In skeletal muscles of C57BL/6 mice that were E2 deficient via ovariectomy (OVX), pRLC was lower than that from ovary-intact, sham-operated mice (Sham). The reduced pRLC in OVX muscle was reversed by in vivo E2 treatment. Posttetanic potentiation (PTP) of muscle from OVX mice was low compared with that from Sham mice, and this decrement was reversed by acute E2 treatment, demonstrating physiological consequence. Western blot of those muscles revealed that low PTP corresponded with low pRLC and higher PTP with greater pRLC. We aimed to elucidate signaling pathways affecting E2-mediated pRLC using a kinase inhibitor library and C2C12 cells as well as a specific myosin light chain kinase inhibitor in muscles. PI3K/Akt, MAPK, and CamKII were identified as candidate kinases sensitive to E2 in terms of phosphorylating RLC. Applying siRNA strategy in C2C12 cells, pRLC triggered by E2 was found to be mediated by estrogen receptor-β and the G protein-coupled estrogen receptor. Together, these results provide evidence that E2 modulates myosin pRLC in skeletal muscle and is one mechanism by which this hormone can affect muscle contractility in females.

2018 ◽  
Vol 124 (4) ◽  
pp. 980-992 ◽  
Author(s):  
Brittany C. Collins ◽  
Tara L. Mader ◽  
Christine A. Cabelka ◽  
Melissa R. Iñigo ◽  
Espen E. Spangenburg ◽  
...  

Estradiol deficiency in females can result in skeletal muscle strength loss, and treatment with estradiol mitigates the loss. There are three primary estrogen receptors (ERs), and estradiol elicits effects through these receptors in various tissues. Ubiquitous ERα-knockout mice exhibit numerous biological disorders, but little is known regarding the specific role of ERα in skeletal muscle contractile function. The purpose of this study was to determine the impact of skeletal muscle-specific ERα deletion on contractile function, hypothesizing that ERα is a main receptor through which estradiol affects muscle strength in females. Deletion of ERα specifically in skeletal muscle (skmERαKO) did not affect body mass compared with wild-type littermates (skmERαWT) until 26 wk of age, at which time body mass of skmERαKO mice began to increase disproportionally. Overall, skmERαKO mice had low strength demonstrated in multiple muscles and by several contractile parameters. Isolated extensor digitorum longus muscles from skmERαKO mice produced 16% less eccentric and 16–26% less submaximal and maximal isometric force, and isolated soleus muscles were more fatigable, with impaired force recovery relative to skmERαWT mice. In vivo maximal torque productions by plantarflexors and dorsiflexors were 16% and 12% lower in skmERαKO than skmERαWT mice, and skmERαKO muscles had low phosphorylation of myosin regulatory light chain. Plantarflexors also generated 21–32% less power, submaximal isometric and peak concentric torques. Data support the hypothesis that ablation of ERα in skeletal muscle results in muscle weakness, suggesting that the beneficial effects of estradiol on muscle strength are receptor mediated through ERα. NEW & NOTEWORTHY We comprehensively measured in vitro and in vivo skeletal muscle contractility in female estrogen receptor α (ERα) skeletal muscle-specific knockout mice and report that force generation is impaired across multiple parameters. These results support the hypothesis that a primary mechanism through which estradiol elicits its effects on strength is mediated by ERα. Evidence is presented that estradiol signaling through ERα appears to modulate force at the molecular level via posttranslational modifications of myosin regulatory light chain.


2015 ◽  
Vol 118 (8) ◽  
pp. 971-979 ◽  
Author(s):  
Andreas Buch Møller ◽  
Mikkel Holm Vendelbo ◽  
Britt Christensen ◽  
Berthil Forrest Clasen ◽  
Ann Mosegaard Bak ◽  
...  

Data from transgenic animal models suggest that exercise-induced autophagy is critical for adaptation to physical training, and that Unc-51 like kinase-1 (ULK1) serves as an important regulator of autophagy. Phosphorylation of ULK1 at Ser555 stimulates autophagy, whereas phosphorylation at Ser757 is inhibitory. To determine whether exercise regulates ULK1 phosphorylation in humans in vivo in a nutrient-dependent manner, we examined skeletal muscle biopsies from healthy humans after 1-h cycling exercise at 50% maximal O2 uptake on two occasions: 1) during a 36-h fast, and 2) during continuous glucose infusion at 0.2 kg/h. Physical exercise increased ULK1 phosphorylation at Ser555 and decreased lipidation of light chain 3B. ULK1 phosphorylation at Ser555 correlated positively with AMP-activated protein kinase-α Thr172 phosphorylation and negatively with light chain 3B lipidation. ULK1 phosphorylation at Ser757 was not affected by exercise. Fasting increased ULK1 and p62 protein expression, but did not affect exercise-induced ULK1 phosphorylation. These data demonstrate that autophagy signaling is activated in human skeletal muscle after 60 min of exercise, independently of nutritional status, and suggest that initiation of autophagy constitutes an important physiological response to exercise in humans.


2010 ◽  
Vol 298 (4) ◽  
pp. R989-R996 ◽  
Author(s):  
Michael J. Greenberg ◽  
Tanya R. Mealy ◽  
Michelle Jones ◽  
Danuta Szczesna-Cordary ◽  
Jeffrey R. Moore

Skeletal muscle, during periods of exertion, experiences several different fatigue-based changes in contractility, including reductions in force, velocity, power output, and energy usage. The fatigue-induced changes in contractility stem from many different factors, including alterations in the levels of metabolites, oxidative damage, and phosphorylation of the myosin regulatory light chain (RLC). Here, we measured the direct molecular effects of fatigue-like conditions on actomyosin's unloaded sliding velocity using the in vitro motility assay. We examined how changes in ATP, ADP, Pi, and pH affect the ability of the myosin to translocate actin and whether the effects of each individual molecular species are additive. We found that the primary causes of the reduction in unloaded sliding velocity are increased [ADP] and lowered pH and that the combined effects of the molecular species are nonadditive. Furthermore, since an increase in RLC phosphorylation is often associated with fatigue, we examined the differential effects of myosin RLC phosphorylation and fatigue on actin filament velocity. We found that phosphorylation of the RLC causes a 22% depression in sliding velocity. On the other hand, RLC phosphorylation ameliorates the slowing of velocity under fatigue-like conditions. We also found that phosphorylation of the myosin RLC increases actomyosin affinity for ADP, suggesting a kinetic role for RLC phosphorylation. Furthermore, we showed that ADP binding to skeletal muscle is load dependent, consistent with the existence of a load-dependent isomerization of the ADP bound state.


2008 ◽  
Vol 183 (5) ◽  
pp. 785-793 ◽  
Author(s):  
Tsui-Han Loo ◽  
Mohan Balasubramanian

p21-activated kinases (Paks) have been identified in a variety of eukaryotic cells as key effectors of the Cdc42 family of guanosine triphosphatases. Pak kinases play important roles in regulating the filamentous actin cytoskeleton. In this study, we describe a function for the Schizosaccharomyces pombe Pak-related protein Pak1p/Orb2p in cytokinesis. Pak1p localizes to the actomyosin ring during mitosis and cytokinesis. Loss of Pak1p function leads to accelerated cytokinesis. Pak1p mediates phosphorylation of myosin II regulatory light chain Rlc1p at serine residues 35 and 36 in vivo. Interestingly, loss of Pak1p function or substitution of serine 35 and serine 36 of Rlc1p with alanines, thereby mimicking a dephosphorylated state of Rlc1p, leads to defective coordination of mitosis and cytokinesis. This study reveals a new mechanism involving Pak1p kinase that helps ensure the fidelity of cytokinesis.


2009 ◽  
Vol 297 (2) ◽  
pp. R265-R274 ◽  
Author(s):  
Michael J. Greenberg ◽  
Tanya R. Mealy ◽  
James D. Watt ◽  
Michelle Jones ◽  
Danuta Szczesna-Cordary ◽  
...  

Phosphorylation of the myosin regulatory light chain (RLC) in skeletal muscle has been proposed to act as a molecular memory of recent activation by increasing the rate of force development, ATPase activity, and isometric force at submaximal activation in fibers. It has been proposed that these effects stem from phosphorylation-induced movement of myosin heads away from the thick filament backbone. In this study, we examined the molecular effects of skeletal muscle myosin RLC phosphorylation using in vitro motility assays. We showed that, independently of the thick filament backbone, the velocity of skeletal muscle myosin is decreased upon phosphorylation due to an increase in the myosin duty cycle. Furthermore, we did not observe a phosphorylation-dependent shift in calcium sensitivity in the absence of the myosin thick filament. These data suggest that phosphorylation-induced movement of myosin heads away from the thick filament backbone explains only part of the observed phosphorylation-induced changes in myosin mechanics. Last, we showed that the duty cycle of skeletal muscle myosin is strain dependent, consistent with the notion that strain slows the rate of ADP release in striated muscle.


Sign in / Sign up

Export Citation Format

Share Document