Progestin increases cathepsin D synthesis in uterine luminal epithelial cells

1983 ◽  
Vol 244 (5) ◽  
pp. E442-E446 ◽  
Author(s):  
B. C. Moulton ◽  
B. B. Koenig

Early in blastocyst implantation, cells of the uterine luminal epithelium deteriorate and die in response to the presence of the blastocyst. Destruction of the epithelial cells appears to depend on control of the autophagic activity and enzyme content of lysosomes in these cells. Concentrations of the lysosomal proteinase, cathepsin D, have been identified in luminal epithelial cells, and these studies examined changes in epithelial cathepsin D activity and their hormonal control during early pseudopregnancy in the rat. Cathepsin D activity in luminal epithelial cells increases during early pseudopregnancy to maximal levels at the time of sensitivity to deciduogenic stimuli. Rates of cathepsin D synthesis in luminal epithelial cells also increase during early pseudopregnancy, but neither enzyme activity nor rates of synthesis increase in stromal-myometrial tissues. In ovariectomized rats, progestins rather than estradiol increase cathepsin D activity and rates of synthesis in luminal epithelial cells. These studies suggest that cell death in the luminal epithelium during blastocyst implantation may depend in part on the accumulation of lysosomal cathepsin D in these cells in response to progesterone secretion during early pregnancy.

2014 ◽  
Vol 26 (3) ◽  
pp. 421 ◽  
Author(s):  
Connie E. Poon ◽  
Laura Lecce ◽  
Margot L. Day ◽  
Christopher R. Murphy

The glycocalyx of the uterine luminal epithelium in the rat undergoes considerable reduction before implantation. In particular, the reduction of some mucins is necessary to facilitate blastocyst adhesion and subsequent implantation. The present study investigated the localisation, abundance and hormonal control of two mucin proteins, Muc13 and Muc15, in rat uterine epithelial cells during early pregnancy to determine whether they are likely to play a role in uterine receptivity for implantation. Muc13 and Muc15 are localised to the uterine luminal epithelium but show a presence and an absence, respectively, at the apical cell surface at the time of implantation. This localisation corresponds to changes in the molecular weights of Muc13 and Muc15, as shown with western blotting analysis. Furthermore, the localisation of Muc13 and Muc15 was shown to be controlled by the ovarian hormones, oestrogen and progesterone, and they were also localised in preimplantation rat blastocysts. Our results suggest that Muc15 may operate in an anti-adhesive capacity to prevent implantation while Muc13 potentially functions in either an adhesive or cell-signalling role in the events of implantation.


1982 ◽  
Vol 55 (1) ◽  
pp. 1-12
Author(s):  
C.R. Murphy ◽  
J.G. Swift ◽  
T.M. Mukherjee ◽  
A.W. Rogers

In previous work we have shown that ovarian hormones, when injected into ovariectomized rats, alter the fine structure of the plasma membrane of endometrial epithelial cells. In this paper freeze-fractures have been used to study the apical plasma membrane of endometrial epithelial cells of rats during the period of blastocyst implantation of normal pregnancy. On day 1 of pregnancy there were 2354 +/− 114 intramembranous particles (IMPs) per micrometer2 of membrane. The particles were spherical and randomly distributed. On day 5 of pregnancy IMP density rose to 2899 +/− 289 per micrometer2 and some rod-shaped particles were also visible. By day 6 of pregnancy IMP density had risen to 4014 +/− 206 per micrometer2 and there were more rod-shaped IMPs than before. In addition, on day 6 IMPs were also present as rows of particles and some gap-junction-like arrays of particles were also seen. Our findings indicate that there are fine-structural alterations in the apical plasma membrane of endometrial epithelial cells, the site of first contact between maternal and embryonic cells, during the period of early pregnancy. The findings are discussed in the light of suggested mechanisms of blastocyst attachment to the uterine epithelium at implantation.


1976 ◽  
Vol 71 (2) ◽  
pp. 460-471 ◽  
Author(s):  
D Sandoz ◽  
E Biosvieux-Ulrich ◽  
C Laugier ◽  
E Brard

The hormonal control of ciliogenesis and transformation of mucous cells was studied in the oviduct (magnum) of ovariectomized quails. Estradiol benzoate induces ciliogenesis with doses varying from 10 mug/day to 100 mug/day after 6 days of treatment. With 100 mug/day, differentiation of some mucous cells is also induced as well as the formation of transitory "mixed cells" which are in the process of ciliogenesis and contain mucous granules. Associated with progesterone (1 mg/day), estradiol benzoate (10 mug/day) induces the differentiation of mucous cells and ciliated cells. The luminal epithelium of quails injected with this mixture is similar to the luminal epithelium observed in the oviduct of laying quails. With the same dose of progesterone (1 mg/day) and 20 mug/day of estradiol benzoate for 6 days, ciliogenesis is completely inhibited. All epithelial cells are secretory cells. Transformation of 50% of the mucous cells into ciliated cells is obtained by following the previous estradiol-progesterone treatment with the injection of estradiol benzoate (20 mug/day) for 3 days. Divisions of mucous cells were also observed. It is also possible to induce ciliogenesis in some mucous cells by withdrawing both hormones for 3 days. In this case, no cell divisions were observed.


2001 ◽  
Vol 29 (2) ◽  
pp. 162-166 ◽  
Author(s):  
K. L. Carraway ◽  
N. Idris

Sialomucin complex (SMC/rat Muc4) is a hetero-dimeric glycoprotein complex composed of an anti-adhesive mucin subunit ascites sialoglyco-protein (ASGP)-1 and a transmembrane subunit ASGP-2. SMC expression is tightly regulated in the uterus, and its expression appears to block blastocyst implantation. Expression is controlled by steroid hormone levels in the uterine luminal epithelium, but not the uterine glandular epithelium, oviduct, cervix or vagina. Increased progesterone levels lead to downregulation of SMC in the uterine luminal epithelium at the time of receptivity for implantation. Transforming growth factor β (TGF-β) has been implicated as a factor in uterine progesterone responses. Studies on primary rat uterine luminal epithelial cells showed that both SMC protein and transcript are downregulated by TGF-β1, although SMC expression is not altered by treatments with oestrogen or progesterone. SMC is also down-regulated when epithelial cells are co-cultured with isolated uterine stromal cells. Oestradiol and anti-TGF-β block the stromal cell effect. These data indicate that uterine epithelial cells respond to hormones to downregulate SMC via an indirect effect on stromal cells involving paracrine action of TGF-β.


1991 ◽  
Vol 130 (2) ◽  
pp. 199-NP ◽  
Author(s):  
V. J. Ayad ◽  
E. L. Matthews ◽  
D. C. Wathes ◽  
T. J. Parkinson ◽  
M. L. Wild

ABSTRACT The present study was designed to determine the localization of the endometrial oxytocin receptor during the ovine oestrous cycle, particularly on day 14, the time of initiation of luteal regression in the ewe. Samples were obtained from 29 ewes at different stages of the oestrous cycle (several during the luteal phase and on every day between day 14 (− 2) and day + 3 of the oestrous period). Oxytocin receptors were localized autoradiographically in sections of uterine tissue, using the 125I-labelled oxytocin receptor antagonist [1-(β-mercapto-β,β-cyclopentamethylene propionic acid), 2-(ortho-methyl)-Tyr2,Thr4,Orn8,Tyr9-NH2]-vasotocin (125I-labelled OTA). There was some variation in the pattern of 125I-labelled OTA labelling between different uterine tissue samples from the same ewe and also between samples obtained from different ewes thought to be at the same stage of the oestrous cycle. A clear overall pattern did, however, emerge with 125I-labelled OTA-binding sites distributed between luminal epithelial cells, glandular epithelial cells and caruncular stromal cells to varying extents on different days of the cycle. During the luteal phase (days 5–12) clear specific labelling of endometrial tissue was generally absent. On day 14 labelling was evident on the luminal epithelium, but only in nine tissue samples out of a total of 18 studied, indicating that the entire luminal surface did not contain oxytocin receptors at this time. Between the day before oestrus and day 3 of the oestrous cycle the luminal epithelium was consistently labelled. The most extensive labelling of the remaining endometrial tissue was observed on the day of oestrus, with 125I-labelled OTA-binding sites clearly present on the stromal cells within caruncles and on a large proportion of secretory epithelia. This contrasted with the day before and the day after oestrus when labelling of glandular tissue was confined to the superficial endometrium, and labelling of caruncular stromal cells, although sometimes evident, was never as intense as on day 0. On days 2 and 3 labelling varied between being similar to that found on day 1 and being confined to the luminal epithelium and very few superficial secretory glands. The results of this study lead us to conclude that the oxytocin receptor shows a differential distribution between stromal cells, epithelial cells lining secretory glands and luminal epithelial cells during the oestrous cycle; that the steroidal regulation of the oxytocin receptor differs between endometrial cell types; and that control of the luminal epithelial oxytocin receptors is probably of particular importance to the regulation of prostaglandin F2α release at luteal regression and during the maternal recognition of pregnancy. Journal of Endocrinology (1991) 130, 199–206


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Patrick D. Rädler ◽  
Barbara L. Wehde ◽  
Aleata A. Triplett ◽  
Hridaya Shrestha ◽  
Jonathan H. Shepherd ◽  
...  

AbstractClaudin-low breast cancer represents an aggressive molecular subtype that is comprised of mostly triple-negative mammary tumor cells that possess stem cell-like and mesenchymal features. Little is known about the cellular origin and oncogenic drivers that promote claudin-low breast cancer. In this study, we show that persistent oncogenic RAS signaling causes highly metastatic triple-negative mammary tumors in mice. More importantly, the activation of endogenous mutant KRAS and expression of exogenous KRAS specifically in luminal epithelial cells in a continuous and differentiation stage-independent manner induces preneoplastic lesions that evolve into basal-like and claudin-low mammary cancers. Further investigations demonstrate that the continuous signaling of oncogenic RAS, as well as regulators of EMT, play a crucial role in the cellular plasticity and maintenance of the mesenchymal and stem cell characteristics of claudin-low mammary cancer cells.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 832
Author(s):  
Damian Tanski ◽  
Agnieszka Skowronska ◽  
Malgorzata Tanska ◽  
Ewa Lepiarczyk ◽  
Mariusz T. Skowronski

Aquaporins (AQPs) are integral membrane proteins, which play an important role in water homeostasis in the uterus. According to the literature, the expression of aquaporins in reproductive structures depends on the local hormonal milieu. The current study investigated the effect of selected PKA kinase inhibitor H89 and MAPK kinase inhibitor PD98059, on the expression of AQP1, 2, 5, and 7, and steroid hormones (E2), progesterone (P4), and arachidonic acid (AA) in the porcine endometrium on days 18–20 and 2–4 of the estrous cycle (the follicular phase where estrogen and follicle-stimulating hormone (FSH) are secreted increasingly in preparation for estrus and the luteal phase where the ovarian follicles begin the process of luteinization with the formation of the corpus luteum and progesterone secretion, respectively). The luminal epithelial cells were incubated in vitro in the presence of the aforementioned factors. The expression of mRNA was determined by the quantitative real-time PCR technique. In general, in Experiment 1, steroid hormones significantly increased expression of AQP1, 2, and 5 while arachidonic acid increased expression of AQP2 and AQP7. On the other hand, MAPK kinase inhibitor significantly decreased the expression of AQP1 and 5. In Experiment 2, E2, P4, or AA combined with kinase inhibitors differentially affected on AQPs expression. E2 in combination with PKA inhibitor significantly decreased expression of AQP1 but E2 or P4 combined with this inhibitor increased the expression of AQP5 and 7. On the contrary, E2 with PD98059 significantly increased AQP5 and AQP7 expression. Progesterone in combination with MAPK kinase inhibitor significantly downregulated the expression of AQP5 and upregulated AQP7. Arachidonic acid mixed with H89 or PD98059 caused a decrease in the expression of AQP5 and an increase of AQP7. The obtained results indicate that estradiol, progesterone, and arachidonic acid through PKA and MAPK signaling pathways regulate the expression of AQP1 and AQP5 in the porcine luminal epithelial cells in the periovulatory period.


1972 ◽  
Vol 127 (4) ◽  
pp. 705-713 ◽  
Author(s):  
Janet N. Ryan ◽  
J. Frederick Woessner

1. The earlier observation (Woessner, 1969) of oestradiol inhibition of collagen breakdown is confirmed and extended. Administration of 100μg of oestradiol-17β/day to parturient rats strongly inhibits the loss of collagen from the involuting uterus. Three experiments show that this effect is due to an inhibition of collagen degradation rather than to a stimulation of collagen synthesis. 2. Uterine collagen was labelled with hydroxy[14C]-proline by the administration of [14C]proline near the end of pregnancy. By 3 days post partum, control uteri lost 83% of their collagen and 90% of their hydroxy[14C]proline. Uteri from oestradiol-treated rats lost only 50% of both total and labelled hydroxyproline, with no decrease in the specific radioactivity of the hydroxyproline. 3. Incorporation of [14C]proline into uterine collagen hydroxyproline in vivo was not affected by oestradiol treatment. 4. Urinary excretion of hydroxyproline was increased in post-partum control rats and decreased in oestradiol-treated rats. 5. An enzyme capable of cleaving 4-phenylazobenzyloxycarbonyl-l-prolyl-l-leucylglycyl- l-prolyl-d-arginine (a substrate for clostridial collagenase) increased in activity in the post-partum uterus and was unaffected by oestradiol treatment. 6. Uterine homogenates digested uterine collagen extensively at pH3.2. This digestion was unaffected by the oestradiol treatment. 7. Lysosomal fractions prepared by density-gradient centrifugation of uterine homogenates contained coincident peaks of cathepsin D activity and peptide-bound hydroxyproline. The cathepsin D and hydroxyproline contents of this peak were unaffected by oestradiol treatment.


Sign in / Sign up

Export Citation Format

Share Document