Slow to fast alterations in skeletal muscle fibers caused by clenbuterol, a beta 2-receptor agonist

1988 ◽  
Vol 254 (6) ◽  
pp. E726-E732 ◽  
Author(s):  
R. J. Zeman ◽  
R. Ludemann ◽  
T. G. Easton ◽  
J. D. Etlinger

Chronic treatment of rats with clenbuterol, a beta 2-receptor agonist (8–12 wk), caused hypertrophy of histochemically identified fast- but not slow-twitch fibers within the soleus, while the mean areas of both fiber types were increased in the extensor digitorum longus (EDL). In contrast, treatment with the beta 2-receptor antagonist, butoxamine, reduced fast-twitch fiber size in both muscles. In the solei and to a lesser extent in the EDLs, the ratio of the number of fast- to slow-twitch fibers was increased by clenbuterol, while the opposite was observed with butoxamine. The muscle fiber hypertrophy observed in the EDL was accompanied by parallel increases in maximal tetanic tension and muscle cross-sectional area, while in the solei, progressive increases in rates of force development and relaxation toward values typical of fast-twitch muscles were also observed. Our results suggest a role of beta 2-receptors in regulating muscle fiber type composition as well as growth.

Cells ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 243 ◽  
Author(s):  
Manting Ma ◽  
Bolin Cai ◽  
Liang Jiang ◽  
Bahareldin Ali Abdalla ◽  
Zhenhui Li ◽  
...  

Emerging studies indicate important roles for non-coding RNAs (ncRNAs) as essential regulators in myogenesis, but relatively less is known about their function. In our previous study, we found that lncRNA-Six1 can regulate Six1 in cis to participate in myogenesis. Here, we studied a microRNA (miRNA) that is specifically expressed in chickens (miR-1611). Interestingly, miR-1611 was found to contain potential binding sites for both lncRNA-Six1 and Six1, and it can interact with lncRNA-Six1 to regulate Six1 expression. Overexpression of miR-1611 represses the proliferation and differentiation of myoblasts. Moreover, miR-1611 is highly expressed in slow-twitch fibers, and it drives the transformation of fast-twitch muscle fibers to slow-twitch muscle fibers. Together, these data demonstrate that miR-1611 can mediate the regulation of Six1 by lncRNA-Six1, thereby affecting proliferation and differentiation of myoblasts and transformation of muscle fiber types.


2020 ◽  
Author(s):  
Kaiqi Weng ◽  
Weiran Huo ◽  
Tiantian Gu ◽  
Qiang Bao ◽  
Li-e Hou ◽  
...  

Abstract Background: Goose meat is more and more popular among consumers because of its good quality. The fiber characteristics, as a key determinant factor, contributing to meat quality has been well demonstrated, and the marketable ages are also closely related to meat quality in livestock and chicken. However, little is known about the effect of different marketable ages on the meat quality through fiber characteristics in goose. Results: Here, 1-day, 28-day and three market-age old (70, 90 & 120 days) Yangzhou geese were selected and their fiber characteristics were investigated. The results showed that only fast-twitch fibers were observed in the breast muscle irrespective of the ages, while little slow-twitch fibers could be identified in leg muscle in three marketable ages, especially in gastrocnemius and extensor digitorum longus. As for the fiber diameter, a rapid upward trend was observed in breast muscle from 70 days to 90 days, and the corresponding values were 19.88 to 26.27μm, respectively, and it remained stable 90d thereafter. While the diameter and cross-sectional area of muscle fiber in leg muscle increased with ages. In addition, the proximate composition and physical properties was measured at different ages. 120-day-old geese had richer intramuscular fat and protein content both in breast and leg meat, as well as lower moisture content among three marketable ages. The higher lightness and pressing loss and the lower redness and shear force was observed in the breast and leg meat of 70-day-old geese compared with the 90 and 120-day-old geese. Conclusions: Taken together, although longer marketable age did not affect muscle fiber type in geese, it resulted in a thicker muscle fiber area, richer intramuscular fat and protein content, redder and chewier meat. As a result, the reasonable marketable age should be taken into account to improve the meat quality in the goose production.


Author(s):  
Nejc Umek ◽  
Simon Horvat ◽  
Erika Cvetko

In obesity, accumulation of lipid droplets in skeletal muscle fibers and a shift towards fast muscle fiber types can both contribute to insulin resistance. However, it is not yet clear how intramyocellular lipid accumulation and fiber type changes are associated. Therefore, we investigated to what extent the lipids accumulated in a fiber type-specific manner in the functionally similar fast-, intermediate- and slow‑twitch gastrocnemius, plantaris, and soleus muscles, respectively, in high-fat diet-induced obese 54-week-old female C57BL/6JOlaHsd mice (n=9) compared to control standard-diet-treated lean mice (n=9). A high-fat diet was administered for 26 weeks. Fiber-type specific intramyocellular lipid content analysis and muscle fiber typing were performed using histochemical analysis of lipids with Sudan Black and immunohistochemical analysis of myosin heavy chains on serial sections of skeletal muscles. Compared to the lean mice, the lipid accumulation was most prominent in types 2a and 2x/d fibers (p<0.05) of fast-twitch gastrocnemius and intermediate plantaris muscles in the obese mice, while in slow-twitch soleus muscle, there was no significant lipid accumulation in the obese animals. Furthermore, the slow-twitch soleus muscle of the obese mice with no significant change in muscle fiber diameters exhibited the most pronounced shift towards fast-type myosin heavy chain isoform expression (p<0.05). In contrast, the fast-twitch and intermediate-twitch gastrocnemius and plantaris muscles, respectively, in which the muscle fiber diameters increased (p<0.05), were more resistant toward myosin heavy chain expression changes. In conclusion, we demonstrated both muscle- and fiber-type specificity in intramyocellular lipid accumulation in obese mice, suggesting that in obesity, similar muscle fiber types in different muscles accumulate lipids differentially.


1985 ◽  
Vol 59 (2) ◽  
pp. 639-646 ◽  
Author(s):  
R. R. Roy ◽  
K. M. Baldwin ◽  
T. P. Martin ◽  
S. P. Chimarusti ◽  
V. R. Edgerton

The rat soleus (SOL) or medial gastrocnemius (MG) were chronically overloaded by removing their major synergists bilaterally. After 12–14 wks the overloaded SOL (OS) and overloaded MG (OMG) muscles had approximately 50% greater cross-sectional areas (CSA) than the controls. Maximum twitch (Pt) and tetanic (Po) tensions were approximately 46% larger in the OS compared with the normal SOL. The OMG produced 10 and 37% higher Pt and Po, respectively. Specific tension (Po/CSA) was not altered in either group (P greater than 0.05). Contraction times and half-relaxation times were unchanged. Myofibrillar and myosin ATPase specific activities indicated a shift toward that resembling a slower muscle in both the OS and the red portion but not the white portion of the OMG. Generally, markers of glycogen metabolism were reduced (P less than 0.05) in the same muscle areas that showed reduced ATPase activity. These biochemical results were consistent with the apparent histochemical conversion of fibers from fast-twitch, glycolytic----fast-twitch, oxidative-glycolytic----slow-twitch, oxidative types in these muscle areas. These results suggest that overloading either a fast- or slow-twitch plantarflexor results in an increase in muscle mass and maximum tension and in metabolic shifts that generally resemble those observed in a slower muscle. Further, the degree of adaptation appears to be related to the initial fiber type composition of the muscle and/or of the muscle region.


1991 ◽  
Vol 260 (5) ◽  
pp. C1060-C1070 ◽  
Author(s):  
H. L. Granzier ◽  
H. A. Akster ◽  
H. E. Ter Keurs

We studied a slow- and a fast-twitch muscle fiber type of the perch that have different thin filament lengths. The force-sarcomere length relations were measured, and it was tested whether their descending limbs were predicted by the cross-bridge theory. To determine the predicted relations, filament lengths were measured by electron microscopy. Measurements were corrected for shrinkage with the use of I-band and H-zone periodicities. Thick filament lengths of the two fiber types were found to be similar (1.63 +/- 0.06 and 1.64 +/- 0.10 microns for slow- and fast-twitch fibers, respectively), whereas the thin filament lengths were clearly different: 1.24 +/- 0.10 microns (n = 86) for the slow-twitch type and 0.94 +/- 0.04 microns (n = 94) for the fast type. The descending limbs of the two fiber types are therefore predicted to be shifted along the sarcomere length axis by approximately 0.6 microns. Sarcomere length was measured on-line by laser diffraction in a single region in the center of the fibers. The passive force-sarcomere strain relation increased much more steeply in the slow-twitch fibers. The descending limb of the active force-sarcomere length relation of fast twitch fibers was linear (r = 0.92), but was found at sarcomere lengths approximately 0.1 micron greater than predicted. The descending limb of the slow-twitch fibers was also linear (r = 0.87) but was now found at sarcomere lengths approximately 0.05 microns less than predicted. The difference in position of the descending limbs of the two fiber types amounted to 0.5 microns, approximately 0.1 micron less than predicted. The difference between measured and predicted descending limbs was statistically insignificant.


2008 ◽  
Vol 33 (2) ◽  
pp. 272-281 ◽  
Author(s):  
Thomas J. Walters ◽  
John F. Kragh ◽  
David G. Baer

This study was designed to determine if previously reported differences in the functional impairment of muscles composed of predominantly different fiber types occurs following extended periods of ischemia. We hypothesized that the soleus (Sol) muscle, a predominantly slow-twitch muscle, would be less vulnerable to tourniquet-induced ischemia–reperfusion than the plantaris (Plant), a predominantly fast-twitch muscle, as determined by the assessment of isometric contractile function. Male Sprague–Dawley rats were assigned to one of the following groups to undergo tourniquet application (TKA) (n = 6/group): 2 h TKA, 2 d recovery; 4 h TKA, 2 d recovery; 2 h TKA, 14 d recovery; or 4 h TKA, 14 d recovery. In situ isometric contractile properties were assessed in the predominantly slow-twitch Sol and the predominantly fast-twitch Plant; the contralateral muscle served as the internal control. At 2 d, muscle contraction could not be elicited via neural stimulation, but muscles did contract with direct stimulation, which indicates neural injury. This condition was resolved by day 14. At this time point, tetanic tension (Po) in the Plant was reduced by 45% and 69% in the 2 and 4 h groups, respectively. Po for the Sol was unaffected in the 2 h group, but was reduced by 30% in the 4 h group. The fatigue resistance of the Plant was increased 2 fold in the 4 h group and was unchanged in all other groups. These results demonstrate that vulnerability to tourniquet-induced ischemia–reperfusion injury is dramatically different with respect to muscle fiber-type composition.


1979 ◽  
Vol 47 (2) ◽  
pp. 388-392 ◽  
Author(s):  
R. J. Gregor ◽  
V. R. Edgerton ◽  
J. J. Perrine ◽  
D. S. Campion ◽  
C. DeBus

The relationship between the predominance of fast and slow muscle fibers of the vastus lateralis and “in vivo” torque velocity properties in 22 female athletes was studied. Fiber types were classified according to the histochemical myofibrillar adenosine triphosphatase technique at a basic pH. Maximal extensor troques were recorded at 30 degrees from full extension at four selected velocities. While results confirm earlier reports on muscle fiber type and performance, an additional finding was that as knee extension velocities increased from 0 to 95 degrees/s angle specific extensor torque production did not decline as seen in in vitro muscle preparations. The difference in extensor torque between 0 and 96 degrees/s appeared far more critical than the differences observed between 96 and 288 degrees/s. Significant differences in torque were seen at 96, 192, and 288 degrees/s in thos with greater than 50% and less than 50% slow-twitch fibers. When expressed per kilogram of body weight the subjects with greater than 50% fast-twitch fiber produced the greatest torque at 192 degrees/s. These results suggest that the velocity at which torque begins to decline in vivo is related to the proportion of slow-twitch fibers in the vastus lateralismuscle.


1983 ◽  
Vol 245 (2) ◽  
pp. H265-H275 ◽  
Author(s):  
B. G. Mackie ◽  
R. L. Terjung

Blood flow to fast-twitch red (FTR), fast-twitch white (FTW), and slow-twitch red (STR) muscle fiber sections of the gastrocnemius-plantaris-soleus muscle group was determined using 15 +/- 3-microns microspheres during in situ stimulation in pentobarbital-anesthetized rats. Steady-state blood flows were assessed during the 10th min of contraction using twitch (0.1, 0.5, 1, 3, and 5 Hz) and tetanic (7.5, 15, 30, 60, and 120/min) stimulation conditions. In addition, an earlier blood flow determination was begun at 3 min (twitch series) or at 30 s (tetanic series) of stimulation. Blood flow was highest in the FTR (220-240 ml X min-1 X 100 g-1), intermediate in the STR (140), and lowest in the FTW (70-80) section during tetanic contraction conditions estimated to coincide with the peak aerobic function of each fiber type. These blood flows are fairly proportional to the differences in oxidative capacity among fiber types. Further, their absolute values are similar to those predicted from the relationship between blood flow and oxidative capacity found by others for dog and cat muscles. During low-frequency contraction conditions, initial blood flow to the FTR and STR sections were excessively high and not dependent on contraction frequency. However, blood flows subsequently decreased to values in keeping with the relative energy demands. In contrast, FTW muscle did not exhibit this time-dependent relative hyperemia. Thus, besides the obvious quantitative differences between skeletal muscle fiber types, there are qualitative differences in blood flow response during contractions. Our findings establish that, based on fiber type composition, a heterogeneity in blood flow distribution can occur within a whole muscle during contraction.


2012 ◽  
Vol 22 (4) ◽  
pp. 292-303 ◽  
Author(s):  
Ildus I. Ahmetov ◽  
Olga L. Vinogradova ◽  
Alun G. Williams

The ability to perform aerobic or anaerobic exercise varies widely among individuals, partially depending on their muscle-fiber composition. Variability in the proportion of skeletal-muscle fiber types may also explain marked differences in aspects of certain chronic disease states including obesity, insulin resistance, and hypertension. In untrained individuals, the proportion of slow-twitch (Type I) fibers in the vastus lateralis muscle is typically around 50% (range 5–90%), and it is unusual for them to undergo conversion to fast-twitch fibers. It has been suggested that the genetic component for the observed variability in the proportion of Type I fibers in human muscles is on the order of 40–50%, indicating that muscle fiber-type composition is determined by both genotype and environment. This article briefly reviews current progress in the understanding of genetic determinism of fiber-type proportion in human skeletal muscle. Several polymorphisms of genes involved in the calcineurin–NFAT pathway, mitochondrial biogenesis, glucose and lipid metabolism, cytoskeletal function, hypoxia and angiogenesis, and circulatory homeostasis have been associated with fiber-type composition. As muscle is a major contributor to metabolism and physical strength and can readily adapt, it is not surprising that many of these gene variants have been associated with physical performance and athlete status, as well as metabolic and cardiovascular diseases. Genetic variants associated with fiber-type proportions have important implications for our understanding of muscle function in both health and disease.


Sign in / Sign up

Export Citation Format

Share Document