In vivo studies on paracrine actions of pituitary angiotensin II in stimulating prolactin release in rats

1990 ◽  
Vol 258 (4) ◽  
pp. E619-E624 ◽  
Author(s):  
M. K. Steele ◽  
L. S. Myers

The present experiments were performed to test the hypothesis that, in vivo, intrapituitary angiotensin II (ANG II) mediates the effect of luteinizing hormone-releasing hormone (LHRH) on prolactin release. After intravenous administration of LHRH (100 ng/100 microliters saline), plasma levels of both luteinizing hormone (LH) and prolactin were increased in ovariectomized rats pretreated with estradiol and progesterone. Intravenous administration of saralasin or sarthran (ANG II receptor blockers) reduced or abolished, respectively, the LHRH-induced increase in prolactin without affecting the rise in LH. In other ovariectomized steroid-treated rats, saralasin did not affect the increase in LH or prolactin induced by 10 min of restraint stress. Finally, in intact female rats on the day of proestrus, neither saralasin nor sarthran affected the mid-cycle prolactin surge. Taken together, these results show that in vivo exogenous LHRH stimulates prolactin release via a paracrine action of pituitary ANG II. However, under other conditions in which both LH and prolactin (and presumably endogenous LHRH) are elevated, pituitary ANG II does not appear to be involved in the prolactin rise.

1996 ◽  
Vol 271 (2) ◽  
pp. H417-H421 ◽  
Author(s):  
E. Balcells ◽  
Q. C. Meng ◽  
G. R. Hageman ◽  
R. W. Palmer ◽  
J. N. Durand ◽  
...  

Angiotensin-converting enzyme (ACE) inhibitors (I) have beneficial effects that are presumably mediated by decreased angiotensin II (ANG II) production. However, in vitro assays in human heart extracts have demonstrated that > 75% of ANG II-forming enzyme activity was not inhibited by captopril (Cap) and therefore did not appear to be related to ACE but was inhibited by chymostatin, suggesting that it was predominantly chymase-like activity. Previous work in our laboratory has demonstrated a similar relative contribution of ACE and chymase-like activity toward ANG II formation in vitro in dog heart tissue extracts. Accordingly, we compared Cap-inhibitable ANG II formation in vitro in heart tissue of five adult mongrel dogs to the in vivo Cap-inhibitable, ANG II-forming activity across the myocardial bed in four openchest, adult mongrel dogs. In vitro studies demonstrated that only 6 +/- 2% of ANG II formation was inhibited by Cap from heart tissue extracts of the left ventricular midwall. In in vivo studies, ANG I (0.5 nmol/min) followed by ANG I plus the ACE inhibitor Cap (0.1 mumol/min) was infused into the left anterior descending artery, and ANG II was assayed in the proximal aorta and coronary sinus. The arterial-venous (A-V) difference of ANG II across the myocardial circulation increased significantly during ANG I infusion (-13.4 +/- 23.5 to 142.8 +/- 71.4 pg/ml; P < 0.03). Subsequent coinfusion of Cap with ANG I significantly decreased the myocardial A-V difference of ANG II by 60 +/- 18% (P < 0.05). Thus, in contrast to the in vitro situation, ANG II formation in vivo is inhibited significantly by Cap in the normal dog heart. This comparison of in vivo and in vitro conversion of ANG I to ANG II by ACE and chymase-like activity suggests that in vitro assays may underestimate the functional contribution of ACE to intracardiac ANG II formation.


1993 ◽  
Vol 264 (1) ◽  
pp. F158-F165 ◽  
Author(s):  
R. C. Blantz ◽  
F. B. Gabbai ◽  
B. J. Tucker ◽  
T. Yamamoto ◽  
C. B. Wilson

We have examined the physiological role of the mesangial cell in the regulation of glomerular hemodynamics utilizing mesangial cell lysis by the administration of antithymocyte antibody serum (ATS) 24 h before micropuncture evaluation. Plasma volume expansion (PVE) in normal NaCl-depleted rats increased single-nephron glomerular filtration rate (SNGFR) by 30% because of increases in single-nephron plasma flow (SNPF), whereas glomerular capillary hydrostatic pressure (PG) remained constant. SNGFR did not increase with PVE in NaCl-depleted ATS rats despite increases in SNPF, and PG increased significantly (51 +/- 2 to 67 +/- 3 mmHg) because of afferent arteriolar dilation, whereas efferent resistance remained elevated. Angiotensin II (ANG II) infusion in normal rats decreased SNGFR because of reductions in SNPF and the glomerular ultrafiltration coefficient (LpA), whereas the hydrostatic pressure gradient (delta P) increased. In ATS rats ANG II infusion did not change SNGFR, LpA, or delta P. These in vivo studies suggest that the mesangial cell plays an important role in the regulation of LpA, efferent arteriolar resistance, and the regulation of PG, whereas this cell exerts little effect on the afferent arteriole.


1994 ◽  
Vol 266 (2) ◽  
pp. E274-E278 ◽  
Author(s):  
D. Becu-Villalobos ◽  
I. M. Lacau-Mengido ◽  
S. M. Thyssen ◽  
G. S. Diaz-Torga ◽  
C. Libertun

We have used the nonpeptide angiotensin II (ANG II) receptor antagonists losartan (receptor subtype AT1) and PD-123319 (AT2) to determine the participation of ANG II receptor subtypes in luteinizing hormone-releasing hormone (LHRH)-induced prolactin release in a perifusion study using intact pituitaries in vitro. LHRH (1.85 x 10(-7) M) released prolactin consistently, whereas losartan (10(-5) M) abolished prolactin response without modifying basal prolactin or luteinizing hormone (LH) and follicle-stimulating hormone (FSH) release. PD-123319 (10(-5) M) had no effect on basal or LHRH-induced prolactin, LH, or FSH release. We also determined that the effect of ANG II on prolactin release was mediated by the same receptor subtype. In adenohypophysial cells dispersed in vitro ANG II (10(-8) M) released prolactin. Losartan (10(-7) and 10(-6) M), but not PD-123319, inhibited this effect. We conclude that in intact hypophyses of 15-day-old female rats the effect of LHRH on prolactin release is readily demonstrated. LHRH-induced prolactin release appears to be mediated by ANG II acting in a paracrine manner on AT1 receptors located on lactotrophs.


1998 ◽  
Vol 274 (3) ◽  
pp. E534-E540 ◽  
Author(s):  
Graciela Díaz-Torga ◽  
Arturo González Iglesias ◽  
Rita Achával-Zaia ◽  
Carlos Libertun ◽  
Damasia Becú-Villalobos

We evaluated the effects of angiotensin II (ANG II) and its antagonists on prolactin release, intracellular calcium ([Ca2+]i) mobilization, and [3H]thymidine uptake in cells from normal rat pituitaries and from estrogen-induced pituitary tumors. ANG II (10−7 to 10−9 M) increased prolactin release significantly in control and not in tumoral cells. In control cells, ANG II (10−6 to 10−9 M) produced an immediate spike of [Ca2+]ifollowed by a plateau. Spike levels rose significantly between 10−10 and 10−8 M ANG II, whereas the onset of the spike was retarded with decreasing concentrations. In tumoral cells, ANG II did not produce a spike phase even at 10−6 M. ANG II-induced prolactin release and calcium mobilization were blocked by losartan (AT1 receptor antagonist) and not by PD-123319 (AT2 antagonist). Finally, [3H]thymidine uptake was not modified by ANG II (10−7 to 10−10 M) or its antagonists in either group. Our results suggest that chronic in vivo estrogenic treatment alters in vitro pituitary response to ANG II. Alterations might function to limit excessive prolactin secretion of hypersecreting tumors. Besides, ANG II does not modify DNA synthesis in vitro of cells from normal or tumor-derived hypophyses.


1994 ◽  
Vol 59 (1) ◽  
pp. 57-62 ◽  
Author(s):  
Graciela S. Díaz-Torga ◽  
Damasia Becú-Villalobos ◽  
Carlos Libertun

2005 ◽  
Vol 108 (6) ◽  
pp. 523-530 ◽  
Author(s):  
Giovanna CASTOLDI ◽  
Serena REDAELLI ◽  
Willy M. M. van de GREEF ◽  
Cira R. T. di GIOIA ◽  
Giuseppe BUSCA ◽  
...  

Ang II (angiotensin II) has multiple effects on vascular smooth muscle cells through the modulation of different classes of genes. Using the mRNA differential-display method to investigate gene expression in rat aortic smooth muscle cells in culture in response to 3 h of Ang II stimulation, we observed that Ang II down-regulated the expression of a member of the family of transmembrane receptors for Wnt proteins that was identified as Fzd2 [Fzd (frizzled)-2 receptor]. Fzds are a class of highly conserved genes playing a fundamental role in the developmental processes. In vitro, time course experiments demonstrated that Ang II induced a significant increase (P<0.05) in Fzd2 expression after 30 min, whereas it caused a significant decrease (P<0.05) in Fzd2 expression at 3 h. A similar rapid up-regulation after Ang II stimulation for 30 min was evident for TGFβ1 (transforming growth factor β1; P<0.05). To investigate whether Ang II also modulated Fzd2 expression in vivo, exogenous Ang II was administered to Sprague–Dawley rats (200 ng·kg−1 of body weight·min−1; subcutaneously) for 1 and 4 weeks. Control rats received normal saline. After treatment, systolic blood pressure was significantly higher (P<0.01), whereas plasma renin activity was suppressed (P<0.01) in Ang II- compared with the saline-treated rats. Ang II administration for 1 week did not modify Fzd2 expression in aorta of Ang II-treated rats, whereas Ang II administration for 4 weeks increased Fzd2 mRNA expression (P<0.05) in the tunica media of the aorta, resulting in a positive immunostaining for fibronectin at this time point. In conclusion, our data demonstrate that Ang II modulates Fzd2 expression in aortic smooth muscle cells both in vitro and in vivo.


Hypertension ◽  
2021 ◽  
Vol 78 (Suppl_1) ◽  
Author(s):  
Daniel J Fehrenbach ◽  
Meena S Madhur

Hypertension, or an elevated blood pressure, is the primary modifiable risk factor for cardiovascular disease, the number one cause of mortality worldwide. We previously demonstrated that Th17 activation and interleukin 17A (IL-17A)/IL-21 production is integral for the full development of a hypertensive phenotype as well as the renal and vascular damage associated with hypertension. Rho-associated coiled-coil containing protein Kinase 2 (ROCK2) serves as a molecular switch upregulating Th17 and inhibiting regulatory T cell (Treg) differentiation. We hypothesize that hypertension is characterized by excessive T cell ROCK2 activation leading to increased Th17/Treg ratios and ultimately end-organ damage. We first showed in vitro that KD025, an experimental orally bioavailable ROCK2 inhibitor inhibits Th17 cell proliferation and IL-17A/IL-21 production. To determine if hypertensive stimuli such as endothelial stretch increases T cell ROCK2 expression, we cultured human aortic endothelial cells exposed to 5% (normotensive) or 10% (hypertensive) stretch with circulating human T cells and HLA-DR+ antigen presenting cells. Hypertensive stretch increased T cell ROCK2 expression 2-fold. We then tested the effect of ROCK2 inhibition with KD025 (50mg/kg i.p. daily) in vivo on angiotensin II (Ang II)-induced hypertension. Treatment with KD025 significantly attenuated the hypertensive response within 1 week of Ang II treatment (systolic blood pressure: 139± 8 vs 108±7mmHg) and this persisted for the duration of the 4 week study reaching blood pressures 20 mmHg lower (135±13mmHg) than vehicle treated mice (158±4mmHg p<0.05 effect of treatment 2-way Repeated Measures ANOVA). Flow cytometric analysis of tissue infiltrating leukocytes revealed that KD025 treatment increased Treg/Th17 ratios in the kidney (0.61±0.03 vs 0.79±0.08, p<0.05 student’s t-test). Thus, T cell ROCK2 may be a novel therapeutic target for the treatment of hypertension.


2002 ◽  
Vol 11 (1) ◽  
pp. 21-30 ◽  
Author(s):  
Doris M. Tham ◽  
Baby Martin-McNulty ◽  
Yi-xin Wang ◽  
Dennis W. Wilson ◽  
Ronald Vergona ◽  
...  

Angiotensin II (ANG II) promotes vascular inflammation through nuclear factor-κB (NF-κB)-mediated induction of pro-inflammatory genes. The role of peroxisome proliferator-activated receptors (PPARs) in modulating vascular inflammation and atherosclerosis in vivo is unclear. The aim of the present study was to examine the effects of ANG II on PPARs and NF-κB-dependent pro-inflammatory genes in the vascular wall in an in vivo model of atherosclerosis and aneurysm formation. Six-month-old male apolipoprotein E-deficient (apoE-KO) mice were treated with ANG II (1.44 mg/kg per day for 30 days). ANG II enhanced vascular inflammation, accelerated atherosclerosis, and induced formation of abdominal aortic aneurysms. These effects of ANG II in the aorta were associated with downregulation of both PPAR-α and PPAR-γ mRNA and protein and an increase in transcription of monocyte chemotactic protein-1 (MCP-1), macrophage-colony stimulating factor (M-CSF), endothelial-selectin (E-selectin), intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) throughout the entire aorta. ANG II also activated NF-κB with increases in both p52 and p65 NF-κB subunits. In summary, these in vivo results indicate that ANG II, through activation of NF-κB-mediated pro-inflammatory genes, promotes vascular inflammation, leading to acceleration of atherosclerosis and induction of aneurysm in apoE-KO mice. Downregulation of PPAR-α and -γ by ANG II may diminish the anti-inflammatory potential of PPARs, thus contributing to enhanced vascular inflammation.


2005 ◽  
Vol 23 (3) ◽  
pp. 257-268 ◽  
Author(s):  
Victoria L. M. Herrera ◽  
Lorenz R. B. Ponce ◽  
Pia D. Bagamasbad ◽  
Benjamin D. VanPelt ◽  
Tamara Didishvili ◽  
...  

The dual endothelin-1/angiotensin II receptor (Dear) binds endothelin-1 (ET-1) and angiotensin II (ANG II) with equal affinities in the Dahl S/JRHS rat strain. To elucidate its physiological significance within the context of multiple receptor isoforms and diverse ET-1 and ANG II functions spanning blood pressure regulation, tumor proliferation, and angiogenesis, we characterized mouse Dear and Dear-deficient mice. Unlike null mutant models of ET-1, ANG II, and all other ET-1 and ANG II receptors, Dear−/− deficiency results in impaired angiogenesis, dysregulated neuroepithelial development, and embryonic lethality by embryonic day 12.5. Interestingly, mouse Dear does not bind ANG II, similar to Dahl R/JRHS rat Dear, but binds ET-1 and vascular endothelial growth factor (VEGF) signal peptide (VEGFsp) with equal affinities, suggesting a putative novel multifunction for VEGFsp and a parsimonious mechanism for coordination of VEGF-induced and Dear-mediated pathways. Consistent with its developmental angiogenic role, Dear inhibition results in decreased tumor growth in B16-F10 melanoma cell-induced subcutaneous tumor in female Dear+/−/C57BL6BC10 mice, but not in males (age 3.5 mo), and in 127Cs radiation-induced orthotopic mammary tumors in Sprague-Dawley female rats (age range 3–6.5 mo). Altogether, the data identify Dear as a new player in angiogenesis during development downstream to, and nonredundant with, VEGF-mediated pathways, as well as a putative modulator of tumor angiogenesis acting within a gender-specific paradigm.


Sign in / Sign up

Export Citation Format

Share Document