Glucose metabolism and insulin release in mouse beta HC9 cells, as model for wild-type pancreatic beta-cells

1996 ◽  
Vol 270 (5) ◽  
pp. E846-E857 ◽  
Author(s):  
Y. Liang ◽  
G. Bai ◽  
N. Doliba ◽  
C. Buettger ◽  
L. Wang ◽  
...  

Glucose metabolism and its relationship with glucose-induced insulin release were studied in beta HC9 and beta TC3 cells to identify and characterize key factors controlling the intermediary metabolism of glucose and glucose-induced insulin release. The beta HC9 cell line, derived from pancreatic islets with beta-cell hyperplasia, is characterized by a normal concentration-dependency curve for glucose-stimulated insulin release, whereas the beta TC3 cell line, derived from pancreatic beta-cell tumors, shows a marked leftward shift of this curve. Maximum velocity and the Michaelis-Menten constant of glucose uptake in beta HC9 and beta TC3 cells were similar, even though GLUT-2 expression in these two cell lines differed. In both cell lines, the kinetic characteristics of glucose usage, glucose oxidation, and glucose-induced oxygen consumption were similar to those of glucose phosphorylation, indicating that the kinetics of glucose metabolism from the glucose phosphorylation step in the cytosol to the mitochondrial process of oxidative phosphorylation are determined by the glucose-phosphorylating enzyme, that is, by glucokinase in beta HC9 cells and by hexokinase in beta TC3 cells. Thus beta HC9 cells provide an opportunity for the quantitative analysis of glucose metabolism, the associated generation of coupling factors, and other essential beta-cell functions involved in glucose sensing and insulin secretion.

2018 ◽  
Vol 52 (1) ◽  
pp. 21-26 ◽  
Author(s):  
Eiji Yamato

Abstract Objective. Histone deacytylase inhibitors (HDACis) inhibit the deacetylation of the lysine residue of proteins, including histones, and regulate the transcription of a variety of genes. Recently, HDACis have been used clinically as anti-cancer drugs and possible anti-diabetic drugs. Even though HDACis have been proven to protect the cytokine-induced damage of pancreatic beta cells, evidence also shows that high doses of HDACis are cytotoxic. In the present study, we, therefore, investigated the eff ect of HDACis on insulin secretion in a pancreatic beta cell line. Methods. Pancreatic beta cells MIN6 were treated with selected HDACis (trichostatin A, TSA; valproic acid, VPA; and sodium butyrate, NaB) in medium supplemented with 25 mM glucose and 13% heat-inactivated fetal bovine serum (FBS) for indicated time intervals. Protein expression of Pdx1 and Mafa in MIN6 cells was demonstrated by immunohistochemistry and immunocytochemistry, expression of Pdx1 and Mafa genes was measured by quantitative RT-PCR method. Insulin release from MIN6 cells and insulin cell content were estimated by ELISA kit. Superoxide production in MIN6 cells was measured using a Total ROS/Superoxide Detection System. Results. TSA, VPA, and NaB inhibited the expression of Pdx1 and Mafa genes and their products. TSA treatment led to beta cell malfunction, characterized by enhanced insulin secretion at 3 and 9 mM glucose, but impaired insulin secretion at 15 and 25 mM glucose. Th us, TSA induced dysregulation of the insulin secretion mechanism. TSA also enhanced reactive oxygen species production in pancreatic beta cells. Conclusions. Our results showed that HDACis caused failure to suppress insulin secretion at low glucose concentrations and enhance insulin secretion at high glucose concentrations. In other words, when these HDACis are used clinically, high doses of HDACis may cause hypoglycemia in the fasting state and hyperglycemia in the fed state. When using HDACis, physicians should, therefore, be aware of the capacity of these drugs to modulate the insulin secretory capacity of pancreatic beta cells.


2021 ◽  
Author(s):  
kevin Saitoski ◽  
Maria Ryaboshapkina ◽  
Ghaith Hamza ◽  
Andrew F Jarnuczak ◽  
claire berthault ◽  
...  

Aims/hypothesis: Proprotein convertase subtilisin/kexin 9 (PCSK9) is involved in the degradation of LDLR. However, PCSK9 can target other proteins in a cell-type specific manner. While PCSK9 has been detected in pancreatic islets, its expression in insulin-producing pancreatic beta cells is debated. Herein, we studied PCSK9 expression, regulation and function in the human pancreatic beta cell line EndoC-βH1. Methods: We assessed PCSK9 expression in mouse and human pancreatic islets, and in the pancreatic beta cell line EndoC-βH1. We also studied PCSK9 regulation by cholesterol, lipoproteins, Mevastatin, and by SREBPs transcription factors. To evaluate PCSK9 function in pancreatic beta cells, we performed PCSK9 gain-and loss-of-function experiments in EndoC-βH1 using siPCSK9 or recombinant PCSK9 treatments, respectively. Results: We demonstrate that PCSK9 is expressed and secreted by pancreatic beta cells. In EndoC-βH1 cells, PCSK9 expression is regulated by cholesterol and by SREBPs transcription factors. Importantly, PCSK9 knockdown results in multiple transcriptome, proteome and secretome deregulations and impaired insulin secretion. By gain- and loss-of- function experiments, we observed that PCSK9 regulates the expression levels of LDLR and VLDLR through an extracellular mechanism while CD36, PD-L1 and HLA-ABC are regulated through an intracellular mechanism. Conclusions/interpretation: Collectively, these results highlight PCSK9 as an important regulator of CD36, PD-L1 and HLA-ABC cell surface expression in pancreatic beta cells. Data availability: RNA-seq data have been deposited to GEO database with accession number GSE182016. Mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the following identifiers: PXD027921, PXD027911 and PXD027913.


1995 ◽  
Vol 269 (1) ◽  
pp. E162-E171 ◽  
Author(s):  
D. Hamamdzic ◽  
E. Duzic ◽  
J. D. Sherlock ◽  
S. M. Lanier

Activation of alpha 2-adrenergic receptors (alpha 2-AR) in pancreatic beta-cells inhibits insulin secretion in response to various stimuli, and acute or long-term regulation of alpha 2-AR receptor-mediated effects may influence the tissue response to glucose dishomeostasis. As an initial approach to this issue, we determined the effect of various metabolic and hormonal treatments on alpha 2-AR expression and coupling in the pancreatic beta-cell lines HIT-T15 and RIN-5AH. Radioligand binding studies ([3H]RX-821002) and RNA blot analysis indicate that both pancreatic beta-cell lines express the alpha 2A/D-AR subtype [for HIT-T15 the maximum binding (Bmax) = 113 +/- 28; for RIN-5AH Bmax = 93 +/- 18 fmol/mg of cellular protein]. Treatment of HIT-T15 or RIN-5AH cells with glucocorticoids [dexamethasone, hydrocortisone, or prednisolone (1 microM)] increased alpha 2-AR mRNA level and receptor protein density three- to fivefold. The glucocorticoid-induced increase in receptor density in HIT-T15 cells was associated with 1) an increase in the amount of receptors coupled to G protein as determined by analysis of high-affinity 5'-guanylyl imidodiphosphate-sensitive binding of [3H]UK-14304, a selective alpha 2-AR agonist, and 2) a greater inhibition of forskolin-induced elevation of cellular adenosine 3',5'-cyclic monophosphate after receptor activation. Receptor density in HIT-T15 cells was not altered by different growth conditions, insulin (1 microM), phorbol 12-myristate 13-acetate (1 microM), or the sex steroids testosterone and progesterone (1 microM). These data indicate that glucocorticoids upregulate alpha 2-AR expression and signaling in pancreatic beta-cells. Such regulation may operate in a cell-specific manner, allowing discrete modulation of tissue responses to glucose dishomeostasis.


1994 ◽  
Vol 266 (3) ◽  
pp. C622-C627 ◽  
Author(s):  
T. Aizawa ◽  
Y. Sato ◽  
F. Ishihara ◽  
N. Taguchi ◽  
M. Komatsu ◽  
...  

The nature of ATP-sensitive K+ (K+ATP) channel-independent, insulinotropic action of glucose was investigated using non-glucose-primed pancreatic islets. When the beta-cell was depolarized with K+, glucose dose dependently stimulated insulin release despite inhibition of the K+ATP channel closure by diazoxide. K+ depolarization could be replaced with BAY K 8644, a calcium channel agonist. Prior fasting of rats and lowering ambient temperature greatly suppressed glucose oxidation and utilization by the islet cells and abolished insulin release in response to high glucose alone. However, under these conditions, the K+ATP channel-independent, glucose-induced insulin release was clearly demonstrable. p-Nitrophenyl-alpha-D-glucopyranoside (sweet taste inhibitor) but not its beta-isomer, neomycin (phospholipase C inhibitor) and staurosporine (C kinase blocker) inhibited the K+ATP channel-independent, insulinotropic action of glucose. For the K+ATP channel-independent glucose-induced insulin release 1) elevation of cytosolic calcium is required, 2) minute glucose metabolism is enough, if glucose metabolism is necessary, and 3) direct recognition of glucose molecule, phospholipase C, and protein kinase C appear to be involved.


Diabetologia ◽  
2003 ◽  
Vol 46 (11) ◽  
pp. 1512-1521 ◽  
Author(s):  
L. Brennan ◽  
M. Corless ◽  
C. Hewage ◽  
J. P. G. Malthouse ◽  
N. H. McClenaghan ◽  
...  

2021 ◽  
Author(s):  
Nai-Wen Chi ◽  
Travis Eisemann ◽  
Tsung-Yin J Yeh ◽  
Swati Roy ◽  
Tyler J Chi ◽  
...  

Insulin secretion in the pancreatic beta cell is rate-limited by glucokinase (GCK), the glucose sensor that catalyzes the first step of glucose metabolism. GCK consists of two lobes connected by a flexible hinge that allows the kinase to sample a spectrum of conformations ranging from the active, closed form to several inactive, less-compact forms. Activating GCK mutations can cause hyperinsulinemia and hypoglycemia in infants. A similar phenotype is exhibited in mice deficient in tankyrase (TNKS), prompting us to investigate whether TNKS might modulate the glucose-sensing function of GCK. We found that TNKS colocalizes and directly interacts with GCK. Their interaction is mediated by two ankyrin-repeat clusters (ARC-2 and -5) in TNKS and a tankyrase-binding motif (TBM, aa 63-68) in the GCK hinge. This interaction is conformation sensitive: human GCK variants that cause hyperglycemia (V62M) or hypoglycemia (S64Y) enhance or diminish the interaction respectively, even though they have no impact on TNKS interaction in the context of a GCK peptide (V62M) or a peptide library (S64Y). Moreover, the TNKS-GCK interaction is inhibited by high concentrations of glucose, which are known to stabilize GCK in the active (closed, glucose-avid) conformation. Conversely, glucose phosphorylation by GCK in vitro is inhibited by TNKS. To validate this in vitro inhibitory effect in the MIN6 beta cells, we showed that glucose-stimulated insulin secretion is suppressed upon stabilization of the TNKS protein and conversely is enhanced upon TNKS knockdown. Based on these findings as well as by contrasting with hexokinase-2, we propose that TNKS is a physiological GCK inhibitor in pancreatic beta cells that acts by trapping the kinase in an open (inactive) conformation.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Alessandra Puddu ◽  
Roberta Sanguineti ◽  
Fabrizio Montecucco ◽  
Giorgio Luciano Viviani

Glucose-dependent insulinotropic peptide (GIP) is an incretin hormone produced in the gastrointestinal tract that stimulates glucose dependent insulin secretion. Impaired incretin response has been documented in diabetic patients and was mainly related to the inability of the pancreatic beta cells to secrete insulin in response to GIP. Advanced Glycation End Products (AGEs) have been shown to play an important role in pancreatic beta cell dysfunction. The aim of this study is to investigate whether the exposure to AGEs can induce GIP resistance in the pancreatic beta cell line HIT-T15. Cells were cultured for 5 days in low (CTR) or high glucose (HG) concentration in the presence of AGEs (GS) to evaluate the expression of GIP receptor (GIPR), the intracellular signaling activated by GIP, and secretion of insulin in response to GIP. The results showed that incubation with GS alone altered intracellular GIP signaling and decreased insulin secretion as compared to CTR. GS in combination with HG reduced the expression of GIPR and PI3K and abrogated GIP-induced AKT phosphorylation and GIP-stimulated insulin secretion. In conclusion, we showed that treatment with GS is associated with the loss of the insulinotropic effect of GIP in hyperglycemic conditions.


Sign in / Sign up

Export Citation Format

Share Document