Human ENS regulates the intestinal epithelial barrier permeability and a tight junction-associated protein ZO-1 via VIPergic pathways

2003 ◽  
Vol 285 (5) ◽  
pp. G1028-G1036 ◽  
Author(s):  
Michel Neunlist ◽  
Férial Toumi ◽  
Tsvetelina Oreschkova ◽  
Marc Denis ◽  
Joel Leborgne ◽  
...  

Although the enteric nervous system (ENS) has been shown to regulate various mucosal functions, its role in the physiological control of the human intestinal epithelial barrier is unknown. The aim of this study was to investigate whether the ENS is able to modulate epithelial barrier permeability and a key tight junction-associated protein, zonula occludens-1 (ZO-1). Therefore, we developed a co-culture model, consisting of human submucosa containing the submucosal neuronal network and human polarized colonic epithelial monolayers (HT29-Cl.16E or Caco-2). Submucosal neurons were activated by electrical field stimulation (EFS). Permeability was assessed by measuring the flux of paracellular permeability markers (FITC-dextran or FITC-inulin) across epithelial monolayers. Expression of ZO-1 was determined by immunofluorescence, quantitative immunoblot analysis, and real time RT-PCR. Using the coculture model, we showed that EFS of submucosal neurons resulted in a reduction in FITC-dextran or FITC-inulin fluxes, which was blocked by TTX. In HT29-Cl.16E, the effect of submucosal neuron activation was blocked by a VIP receptor antagonist (VIPra) and reproduced by VIP. Furthermore, ZO-1 expression (mRNA, protein) assessed in HT29-Cl.16E, was significantly increased after submucosal neuron activation by EFS. These effects on ZO-1 expression were blocked by TTX and VIPra and reproduced by VIP. In conclusion, our results strongly suggest a modulatory role of VIPergic submucosal neuronal pathways on intestinal epithelial barrier permeability and ZO-1 expression.

2010 ◽  
Vol 298 (5) ◽  
pp. G774-G783 ◽  
Author(s):  
Nicolas Schlegel ◽  
Michael Meir ◽  
Wolfgang-Moritz Heupel ◽  
Bastian Holthöfer ◽  
Rudolf E. Leube ◽  
...  

The integrity of intercellular junctions that form the “terminal bar” in intestinal epithelium is crucial for sealing the intestinal barrier. Whereas specific roles of tight and adherens junctions are well known, the contribution of desmosomal adhesion for maintaining the intestinal epithelial barrier has not been specifically addressed. For the present study, we generated a desmoglein 2 antibody directed against the extracellular domain (Dsg2 ED) to test whether impaired Dsg2-mediated adhesion affects intestinal epithelial barrier functions in vitro. This antibody was able to specifically block Dsg2 interaction in cell-free atomic-force microscopy experiments. For in vitro studies of the intestinal barrier we used Caco2 cells following differentiation into tight enterocyte-like epithelial monolayers. Application of Dsg2 ED to Caco2 monolayers resulted in increased cell dissociation compared with controls in a dispase-based enterocyte dissociation assay. Under similar conditions, Dsg2 antibody significantly decreased transepithelial electrical resistance and increased FITC-dextran flux, indicating that Dsg2 interaction is critically involved in the maintenance of epithelial intestinal barrier functions. As revealed by immunostaining, this was due to Dsg2 ED antibody-induced rupture of tight junctions because tight junction proteins claudins 1, 4, and 5, occludin, and tight junction-associated protein zonula occludens-1 were partially removed from cell borders by Dsg2 ED treatment. Similar results were obtained by application of a commercial monoclonal antibody directed against the ED of Dsg2. Antibody-induced effects were blocked by absorption experiments using Dsg2-Fc-coated beads. Our data indicate that Dsg2-mediated adhesion affects tight junction integrity and is required to maintain intestinal epithelial barrier properties.


2008 ◽  
Vol 19 (9) ◽  
pp. 3701-3712 ◽  
Author(s):  
Jie Chen ◽  
Lan Xiao ◽  
Jaladanki N. Rao ◽  
Tongtong Zou ◽  
Lan Liu ◽  
...  

The AP-1 transcription factor JunD is highly expressed in intestinal epithelial cells, but its exact role in maintaining the integrity of intestinal epithelial barrier remains unknown. The tight junction (TJ) protein zonula occludens (ZO)-1 links the intracellular domain of TJ-transmembrane proteins occludin, claudins, and junctional adhesion molecules to many cytoplasmic proteins and the actin cytoskeleton and is crucial for assembly of the TJ complex. Here, we show that JunD negatively regulates expression of ZO-1 and is implicated in the regulation of intestinal epithelial barrier function. Increased JunD levels by ectopic overexpression of the junD gene or by depleting cellular polyamines repressed ZO-1 expression and increased epithelial paracellular permeability. JunD regulated ZO-1 expression at the levels of transcription and translation. Transcriptional repression of ZO-1 by JunD was mediated through cAMP response element-binding protein-binding site within its proximal region of the ZO-1-promoter, whereas induced JunD inhibited ZO-1 mRNA translation by enhancing the interaction of the ZO-1 3′-untranslated region with RNA-binding protein T cell-restricted intracellular antigen 1-related protein. These results indicate that JunD is a biological suppressor of ZO-1 expression in intestinal epithelial cells and plays a critical role in maintaining epithelial barrier function.


2016 ◽  
Vol 120 (6) ◽  
pp. 692-701 ◽  
Author(s):  
Karol Dokladny ◽  
Micah N. Zuhl ◽  
Pope L. Moseley

A single layer of enterocytes and tight junctions (intercellular multiprotein complexes) form the intestinal epithelial barrier that controls transport of molecules through transcellular and paracellular pathways. A dysfunctional or “leaky” intestinal tight junction barrier allows augmented permeation of luminal antigens, endotoxins, and bacteria into the blood stream. Various substances and conditions have been shown to affect the maintenance of the intestinal epithelial tight junction barrier. The primary focus of the present review is to analyze the effects of exertional or nonexertional (passive hyperthermia) heat stress on tight junction barrier function in in vitro and in vivo (animals and humans) models. Our secondary focus is to review changes in tight junction proteins in response to exercise or hyperthermic conditions. Finally, we discuss some pharmacological or nutritional interventions that may affect the cellular mechanisms involved in maintaining homeostasis of the intestinal epithelial tight junction barrier during heat stress or exercise.


Author(s):  
Sandra Chánez-Paredes ◽  
Armando Montoya-García ◽  
Karla F. Castro-Ochoa ◽  
Julio García-Cordero ◽  
Leticia Cedillo-Barrón ◽  
...  

The intestinal epithelial barrier (IEB) depends on stable interepithelial protein complexes such as tight junctions (TJ), adherens junctions (AJ), and the actin cytoskeleton. During inflammation, the IEB is compromised due to TJ protein internalization and actin remodeling. An important actin regulator is the actin-related protein 2/3 (Arp2/3) complex, which induces actin branching. Activation of Arp2/3 by nucleation-promoting factors is required for the formation of epithelial monolayers, but little is known about the relevance of Arp2/3 inhibition and endogenous Arp2/3 inhibitory proteins for IEB regulation. We found that the recently identified Arp2/3 inhibitory protein arpin was strongly expressed in intestinal epithelial cells. Arpin expression decreased in response to tumor necrosis factor (TNF)α and interferon (IFN)γ treatment, whereas the expression of gadkin and protein interacting with protein C-kinase α-subunit 1 (PICK1), other Arp2/3 inhibitors, remained unchanged. Of note, arpin coprecipitated with the TJ proteins occludin and claudin-1 and the AJ protein E-cadherin. Arpin depletion altered the architecture of both AJ and TJ, increased actin filament content and actomyosin contractility, and significantly increased epithelial permeability, demonstrating that arpin is indeed required for maintaining IEB integrity. During experimental colitis in mice, arpin expression was also decreased. Analyzing colon tissues from ulcerative colitis patients by Western blot, we found different arpin levels with overall no significant changes. However, in acutely inflamed areas, arpin was significantly reduced compared to non-inflamed areas. Importantly, patients receiving mesalazine had significantly higher arpin levels than untreated patients. As arpin depletion (theoretically meaning more active Arp2/3) increased permeability, we wanted to know whether Arp2/3 inhibition would show the opposite. Indeed, the specific Arp2/3 inhibitor CK666 ameliorated TNFα/IFNγ-induced permeability in established Caco-2 monolayers by preventing TJ disruption. CK666 treatment also attenuated colitis development, colon tissue damage, TJ disruption, and permeability in dextran sulphate sodium (DSS)-treated mice. Our results demonstrate that loss of arpin triggers IEB dysfunction during inflammation and that low arpin levels can be considered a novel hallmark of acute inflammation.


Molecules ◽  
2019 ◽  
Vol 24 (1) ◽  
pp. 148 ◽  
Author(s):  
Xiao Zhao ◽  
Xiao-Xi Xu ◽  
Yang Liu ◽  
En-Ze Xi ◽  
Jing-Jing An ◽  
...  

The intestinal epithelial barrier plays a key protective role in the gut lumen. Bovine lactoferrin (bLF) has been reported to improve the intestinal epithelial barrier function, but its impact on tight junction (TJ) proteins has been rarely described. Human intestinal epithelial crypt cells (HIECs) were more similar to those in the human small intestine, compared with the well-established Caco-2 cells. Accordingly, both HIECs and Caco-2 cells were investigated in this study to determine the effects of bioactive protein bLF on their growth promotion and intestinal barrier function. The results showed that bLF promoted cell growth and arrested cell-cycle progression at the G2/M-phase. Moreover, bLF decreased paracellular permeability and increased alkaline phosphatase activity and transepithelial electrical resistance, strengthening barrier function. Immunofluorescence, western blot and quantitative real-time polymerase chain reaction revealed that bLF significantly increased the expression of three tight junction proteins—claudin-1, occludin, and ZO-1—at both the mRNA and protein levels, and consequently strengthened the barrier function of the two cell models. bLF in general showed higher activity in Caco-2 cells, however, HIECs also exhibited desired responses to barrier function. Therefore, bLF may be incorporated into functional foods for treatment of inflammatory bowel diseases which are caused by loss of barrier integrity.


2001 ◽  
Vol 120 (5) ◽  
pp. A110 ◽  
Author(s):  
Michel Neunlist ◽  
Tsvetelina Oreschkova ◽  
Feria ^Toumi ◽  
Anne-Catherine Aube ◽  
Paul-Antoine Lehur ◽  
...  

2010 ◽  
Vol 104 (3) ◽  
pp. 390-401 ◽  
Author(s):  
Yukun Zhou ◽  
Huanlong Qin ◽  
Ming Zhang ◽  
Tongyi Shen ◽  
Hongqi Chen ◽  
...  

Although a large number of in vitro and in vivo tests have confirmed that taking probiotics can improve the intestinal barrier, few studies have focused on the relationship between probiotics and the intestinal epithelial barrier in hyperbilirubinaemia. To investigate the effects of and mechanisms associated with probiotic bacteria (Lactobacillus plantarum; LP) and unconjugated bilirubin (UCB) on the intestinal epithelial barrier, we measured the viability, apoptotic ratio and protein kinase C (PKC) activity of Caco-2 cells. We also determined the distribution and expression of tight junction proteins such as occludin, zonula occludens (ZO)-1, claudin-1, claudin-4, junctional adhesion molecule (JAM)-1 and F-actin using confocal laser scanning microscopy, immunohistochemistry, Western blotting and real-time quantitative PCR. The present study demonstrated that high concentrations of UCB caused obvious cytotoxicity and decreased the transepithelial electrical resistance (TER) of the Caco-2 cell monolayer. Low concentrations of UCB inhibited the expression of tight junction proteins and PKC but could induce UDP-glucuronosyltransferases 1 family-polypeptide A1 (UGT1A1) expression. UCB alone caused decreased PKC activity, serine phosphorylated occludin and ZO-1 levels. After treatment with LP, the effects of UCB on TER and apoptosis were mitigated; LP also prevented aberrant expression and rearrangement of tight junction proteins. Moreover, PKC activity and serine phosphorylated tight junction protein levels were partially restored after treatment with LP, LP exerted a protective effect against UCB damage to Caco-2 monolayer cells, and it restored the structure and distribution of tight junction proteins by activating the PKC pathway. In addition, UGT1A1 expression induced by UCB in Caco-2 cells could ameliorate the cytotoxicity of UCB.


Sign in / Sign up

Export Citation Format

Share Document