Increased cytochrome P-450 2E1 expression sensitizes hepatocytes to c-Jun-mediated cell death from TNF-α

2002 ◽  
Vol 282 (2) ◽  
pp. G257-G266 ◽  
Author(s):  
Hailing Liu ◽  
Brett E. Jones ◽  
Cynthia Bradham ◽  
Mark J. Czaja

The mechanisms underlying hepatocyte sensitization to tumor necrosis factor-α (TNF-α)-mediated cell death remain unclear. Increases in hepatocellular oxidant stress such as those that occur with hepatic overexpression of cytochrome P-450 2E1 (CYP2E1) may promote TNF-α death. TNF-α treatment of hepatocyte cell lines with differential CYP2E1 expression demonstrated that overexpression of CYP2E1 converted the hepatocyte TNF-α response from proliferation to apoptotic and necrotic cell death. Death occurred despite the presence of increased levels of nuclear factor-κB transcriptional activity and was associated with increased lipid peroxidation and GSH depletion. CYP2E1-overexpressing hepatocytes had increased basal and TNF-α-induced levels of c-Jun NH2-terminal kinase (JNK) activity, as well as prolonged JNK activation after TNF-α stimulation. Sensitization to TNF-α-induced cell death by CYP2E1 overexpression was inhibited by antioxidants or adenoviral expression of a dominant-negative c-Jun. Increased CYP2E1 expression sensitized hepatocytes to TNF-α toxicity mediated by c-Jun and overwhelming oxidative stress. The chronic increase in intracellular oxidant stress created by CYP2E1 overexpression may serve as a mechanism by which hepatocytes are sensitized to TNF-α toxicity in liver disease.

2002 ◽  
Vol 283 (3) ◽  
pp. C831-C838 ◽  
Author(s):  
Bin Lu ◽  
Liying Wang ◽  
Djordje Medan ◽  
David Toledo ◽  
Chuanshu Huang ◽  
...  

The APO-1/Fas ligand (FasL) and tumor necrosis factor-α (TNF-α) are two functionally related molecules that induce apoptosis of susceptible cells. Although the two molecules have been reported to induce apoptosis via distinct signaling pathways, we have shown that FasL can also upregulate the expression of TNF-α, raising the possibility that TNF-α may be involved in FasL-induced apoptosis. Because TNF-α gene expression is under the control of nuclear factor-κB (NF-κB), we investigated whether FasL can induce NF-κB activation and whether such activation plays a role in FasL-mediated cell death in macrophages. Gene transfection studies using NF-κB-dependent reporter plasmid showed that FasL did activate NF-κB promoter activity. Gel shift studies also revealed that FasL mobilized the p50/p65 heterodimeric form of NF-κB. Inhibition of NF-κB by a specific NF-κB inhibitor, caffeic acid phenylethyl ester, or by dominant expression of the NF-κB inhibitory subunit IκB caused an increase in FasL-induced apoptosis and a reduction in TNF-α expression. However, neutralization of TNF-α by specific anti-TNF-α antibody had no effect on FasL-induced apoptosis. These results indicate that FasL-mediated cell death in macrophages is regulated through NF-κB and is independent of TNF-α activation, suggesting the antiapoptotic role of NF-κB and a separate death signaling pathway mediated by FasL.


1998 ◽  
Vol 187 (7) ◽  
pp. 1069-1079 ◽  
Author(s):  
Klaus Ruckdeschel ◽  
Suzanne Harb ◽  
Andreas Roggenkamp ◽  
Mathias Hornef ◽  
Robert Zumbihl ◽  
...  

In this study, we investigated the activity of transcription factor NF-κB in macrophages infected with Yersinia enterocolitica. Although triggering initially a weak NF-κB signal, Y. enterocolitica inhibited NF-κB activation in murine J774A.1 and peritoneal macrophages within 60 to 90 min. Simultaneously, Y. enterocolitica prevented prolonged degradation of the inhibitory proteins IκB-α and IκB-β observed by treatment with lipopolysaccharide (LPS) or nonvirulent, plasmid-cured yersiniae. Analysis of different Y. enterocolitica mutants revealed a striking correlation between the abilities of these strains to inhibit NF-κB and to suppress the tumor necrosis factor α (TNF-α) production as well as to trigger macrophage apoptosis. When NF-κB activation was prevented by the proteasome inhibitor MG-132, nonvirulent yersiniae as well as LPS became able to trigger J774A.1 cell apoptosis and inhibition of the TNF-α secretion. Y. enterocolitica also impaired the activity of NF-κB in epithelial HeLa cells. Although neither Y. enterocolitica nor TNF-α could induce HeLa cell apoptosis alone, TNF-α provoked apoptosis when activation of NF-κB was inhibited by Yersinia infection or by the proteasome inhibitor MG-132. Together, these data demonstrate that Y. enterocolitica suppresses cellular activation of NF-κB, which inhibits TNF-α release and triggers apoptosis in macrophages. Our results also suggest that Yersinia infection confers susceptibility to programmed cell death to other cell types, provided that the appropriate death signal is delivered.


2006 ◽  
Vol 173 (5) ◽  
pp. 665-671 ◽  
Author(s):  
Yoshitaka Nakamori ◽  
Masahiro Emoto ◽  
Naofumi Fukuda ◽  
Akihiko Taguchi ◽  
Shigeru Okuya ◽  
...  

Tumor necrosis factor-α (TNF-α) signaling through the IκB kinase (IKK) complex attenuates insulin action via the phosphorylation of insulin receptor substrate 1 (IRS-1) at Ser307. However, the precise molecular mechanism by which the IKK complex phosphorylates IRS-1 is unknown. In this study, we report nuclear factor κB essential modulator (NEMO)/IKK-γ subunit accumulation in membrane ruffles followed by an interaction with IRS-1. This intracellular trafficking of NEMO requires insulin, an intact actin cytoskeletal network, and the motor protein Myo1c. Increased Myo1c expression enhanced the NEMO–IRS-1 interaction, which is essential for TNF-α– induced phosphorylation of Ser307–IRS-1. In contrast, dominant inhibitory Myo1c cargo domain expression diminished this interaction and inhibited IRS-1 phosphorylation. NEMO expression also enhanced TNF-α–induced Ser307–IRS-1 phosphorylation and inhibited glucose uptake. In contrast, a deletion mutant of NEMO lacking the IKK-β–binding domain or silencing NEMO blocked the TNF-α signal. Thus, motor protein Myo1c and its receptor protein NEMO act cooperatively to form the IKK–IRS-1 complex and function in TNF-α–induced insulin resistance.


2000 ◽  
Vol 14 (2) ◽  
pp. 187-197 ◽  
Author(s):  
Markus Bitzer ◽  
Gero von Gersdorff ◽  
Dan Liang ◽  
Alfredo Dominguez-Rosales ◽  
Amer A. Beg ◽  
...  

A number of pathogenic and proinflammatory stimuli, and the transforming growth factor-β (TGF-β) exert opposing activities in cellular and immune responses. Here we show that the RelA subunit of nuclear factor κB (NF-κB/RelA) is necessary for the inhibition of TGF-β-induced phosphorylation, nuclear translocation, and DNA binding of SMAD signaling complexes by tumor necrosis factor-α (TNF-α). The antagonism is mediated through up-regulation of Smad7 synthesis and induction of stable associations between ligand-activated TGF-β receptors and inhibitory Smad7. Down-regulation of endogenous Smad7 by expression of antisense mRNA releases TGF-β/SMAD-induced transcriptional responses from suppression by cytokine-activated NF-κB/RelA. Following stimulation with bacterial lipopolysaccharide (LPS), or the proinflammatory cytokines TNF-α and interleukin-1β (IL-1β, NF-κB/RelA induces Smad7 synthesis through activation of Smad7 gene transcription. These results suggest a mechanism of suppression of TGF-β/SMAD signaling by opposing stimuli mediated through the activation of inhibitory Smad7 by NF-κB/RelA.


1999 ◽  
Vol 276 (3) ◽  
pp. F390-F397 ◽  
Author(s):  
Yan-Lin Guo ◽  
Baobin Kang ◽  
Li-Jun Yang ◽  
John R. Williamson

It has been proposed that ceramide acts as a cellular messenger to mediate tumor necrosis factor-α (TNF-α)-induced apoptosis. Based on this hypothesis, it was postulated that resistance of some cells to TNF-α cytotoxicity was due to an insufficient production of ceramide on stimulation by TNF-α. The present study was initiated to investigate whether this was the case in mesangial cells, which normally are insensitive to TNF-α-induced apoptosis. Our results indicate that although C2ceramide was toxic to mesangial cells, the cell death it induced differed both morphologically and biochemically from that induced by TNF-α in the presence of cycloheximide (CHX). The most apparent effect of C2ceramide was to cause cells to swell, followed by disruption of the cell membrane. It is evident that C2ceramide caused cell death by necrosis, whereas TNF-α in the presence of CHX killed the cells by apoptosis. C2ceramide did not mimic the effects of TNF-α on the activation of c-Jun NH2-terminal protein kinase and nuclear factor-κB transcription factor. Although mitogen-activated protein kinase [extracellular signal-related kinase (ERK)] was activated by both C2ceramide and TNF-α, such activation appeared to be mediated by different mechanisms as judged from the kinetics of ERK activation. Furthermore, the cleavage of cytosolic phospholipase A2during cell death induced by C2ceramide and by TNF-α in the presence of CHX showed distinctive patterns. The present study provides evidence that apoptosis and necrosis use distinctive signaling machinery to cause cell death.


2007 ◽  
Vol 67 (1) ◽  
pp. 362-370 ◽  
Author(s):  
Sankar Bhattacharyya ◽  
Debaprasad Mandal ◽  
Gouri Sankar Sen ◽  
Suman Pal ◽  
Shuvomoy Banerjee ◽  
...  

2008 ◽  
Vol 182 (1) ◽  
pp. 15-17 ◽  
Author(s):  
Jonathan D. Ashwell

Smac mimetics (inhibitor of apoptosis [IAP] antagonists) are synthetic reagents that kill susceptible tumor cells by inducing degradation of cellular IAP (cIAP) 1 and cIAP2, nuclear factor κB activation, tumor necrosis factor (TNF) α production, TNF receptor 1 occupancy, and caspase-8 activation. In this issue of The Journal of Cell Biology, Vince et al. (see p. 171) report remarkable similarities in the events leading to tumor cell death triggered by the cytokine TWEAK (TNF-like weak inducer of apoptosis) and IAP antagonists. Although the mechanistic details differ, a common and necessary feature that is also shared by TNF receptor 2 signaling is reduction in the level of cIAP1 and, in some cases, cIAP2 and TNF receptor-associated factor 2. These findings not only extend our appreciation of how cell death pathways are kept in check in tumors, they reinforce the possible utility of induced cIDE (cIAP deficiency) in the selective elimination of neoplastic cells.


2009 ◽  
Vol 296 (6) ◽  
pp. H1850-H1858 ◽  
Author(s):  
Jiyeon Yang ◽  
Yoonjung Park ◽  
Hanrui Zhang ◽  
Xiangbin Xu ◽  
Glen A. Laine ◽  
...  

We hypothesized that the interaction between tumor necrosis factor-α (TNF-α)/nuclear factor-κB (NF-κB) via the activation of IKK-β may amplify one another, resulting in the evolution of vascular disease and insulin resistance associated with diabetes. To test this hypothesis, endothelium-dependent (ACh) and -independent (sodium nitroprusside) vasodilation of isolated, pressurized coronary arterioles from mLepr db (heterozygote, normal), Lepr db (homozygote, diabetic), and Lepr db mice null for TNF-α ( dbTNF−/ dbTNF−) were examined. Although the dilation of vessels to sodium nitroprusside was not different between Lepr db and mLepr db mice, the dilation to ACh was reduced in Lepr db mice. The NF-κB antagonist MG-132 or the IKK-β inhibitor sodium salicylate (NaSal) partially restored nitric oxide-mediated endothelium-dependent coronary arteriolar dilation in Lepr db mice, but the responses in mLepr db mice were unaffected. The protein expression of IKK-α and IKK-β were higher in Lepr db than in mLepr db mice; the expression of IKK-β, but not the expression of IKK-α, was attenuated by MG-132, the antioxidant apocynin, or the genetic deletion of TNF-α in diabetic mice. Lepr db mice showed an increased insulin resistance, but NaSal improved insulin sensitivity. The protein expression of TNF-α and NF-κB and the protein modification of phosphorylated (p)-IKK-β and p-JNK were greater in Lepr db mice, but NaSal attenuated TNF-α, NF-κB, p-IKK-β, and p-JNK in Lepr db mice. The ratio of p-insulin receptor substrate (IRS)-1 at Ser307 to IRS-1 was elevated in Lepr db compared with mLepr db mice; both NaSal and the JNK inhibitor SP-600125 reduced the p-IRS-1-to-IRS-1 ratio in Lepr db mice. MG-132 or the neutralization of TNF-α reduced superoxide production in Lepr db mice. In conclusion, our results indicate that the interaction between NF-κB and TNF-α signaling induces the activation of IKK-β and amplifies oxidative stress, leading to endothelial dysfunction in type 2 diabetes.


1996 ◽  
Vol 320 (3) ◽  
pp. 1005-1010 ◽  
Author(s):  
Brent A. NEUSCHWANDER-TETRI ◽  
Joseph M. BELLEZZO ◽  
Robert S. BRITTON ◽  
Bruce R. BACON ◽  
Eben S. FOX

Proinflammatory cytokines released by hepatic macrophages (Kupffer cells) have a central role in the pathogenesis of liver injury and the cardiovascular abnormalities of sepsis. Because cytokine release is controlled primarily at the level of gene expression, intracellular signalling mechanisms that control the transcription of cytokine genes are critical links to organ injury. Oxidant stress up-regulates and antioxidants down-regulate the pleiotropic transcription factor NF-κB, a DNA-binding protein that induces the expression of cytokines and vascular adhesion molecules. Thiol-bearing molecules are also important inhibitors of NF-κB activation, but whether this inhibition represents an antioxidant effect is unknown. This study was undertaken to determine whether important endogenous and pharmacological thiols modulate the activation of NF-κB and the release of tumour necrosis factor α (TNF-α) from Kupffer cells and to ascertain whether these effects are mediated through glutathione. Exposure of rat Kupffer cells to a physiologically relevant concentration of lipopolysaccharide (10 ng/ml) activated NF-κB within 1 h and induced the release of TNF-α over 5 h. Cellular glutathione content remained unchanged after lipopolysaccharide exposure, but both glutathione monoethyl ester and N-acetyl-l-cysteine increased cellular glutathione levels, blocked NF-κB activation and inhibited the release of TNF-α. Inhibition of glutathione synthesis prevented the NAC-induced increase in Kupffer cell glutathione, yet it did not prevent the inhibition of TNF-α release by NAC. Thus the inhibition of NF-κB activation by pharmacological thiols such as NAC might reflect a more general role of the intracellular thiol redox status in NF-κB regulation rather than the antioxidant properties of these agents.


Sign in / Sign up

Export Citation Format

Share Document