scholarly journals Feed-forward signaling of TNF-α and NF-κB via IKK-β pathway contributes to insulin resistance and coronary arteriolar dysfunction in type 2 diabetic mice

2009 ◽  
Vol 296 (6) ◽  
pp. H1850-H1858 ◽  
Author(s):  
Jiyeon Yang ◽  
Yoonjung Park ◽  
Hanrui Zhang ◽  
Xiangbin Xu ◽  
Glen A. Laine ◽  
...  

We hypothesized that the interaction between tumor necrosis factor-α (TNF-α)/nuclear factor-κB (NF-κB) via the activation of IKK-β may amplify one another, resulting in the evolution of vascular disease and insulin resistance associated with diabetes. To test this hypothesis, endothelium-dependent (ACh) and -independent (sodium nitroprusside) vasodilation of isolated, pressurized coronary arterioles from mLepr db (heterozygote, normal), Lepr db (homozygote, diabetic), and Lepr db mice null for TNF-α ( dbTNF−/ dbTNF−) were examined. Although the dilation of vessels to sodium nitroprusside was not different between Lepr db and mLepr db mice, the dilation to ACh was reduced in Lepr db mice. The NF-κB antagonist MG-132 or the IKK-β inhibitor sodium salicylate (NaSal) partially restored nitric oxide-mediated endothelium-dependent coronary arteriolar dilation in Lepr db mice, but the responses in mLepr db mice were unaffected. The protein expression of IKK-α and IKK-β were higher in Lepr db than in mLepr db mice; the expression of IKK-β, but not the expression of IKK-α, was attenuated by MG-132, the antioxidant apocynin, or the genetic deletion of TNF-α in diabetic mice. Lepr db mice showed an increased insulin resistance, but NaSal improved insulin sensitivity. The protein expression of TNF-α and NF-κB and the protein modification of phosphorylated (p)-IKK-β and p-JNK were greater in Lepr db mice, but NaSal attenuated TNF-α, NF-κB, p-IKK-β, and p-JNK in Lepr db mice. The ratio of p-insulin receptor substrate (IRS)-1 at Ser307 to IRS-1 was elevated in Lepr db compared with mLepr db mice; both NaSal and the JNK inhibitor SP-600125 reduced the p-IRS-1-to-IRS-1 ratio in Lepr db mice. MG-132 or the neutralization of TNF-α reduced superoxide production in Lepr db mice. In conclusion, our results indicate that the interaction between NF-κB and TNF-α signaling induces the activation of IKK-β and amplifies oxidative stress, leading to endothelial dysfunction in type 2 diabetes.

2004 ◽  
Vol 287 (4) ◽  
pp. E616-E621 ◽  
Author(s):  
Clinton R. Bruce ◽  
David J. Dyck

IL-6 and TNF-α have been associated with insulin resistance and type 2 diabetes. Furthermore, abnormalities in muscle fatty acid (FA) metabolism are strongly associated with the development of insulin resistance. However, few studies have directly examined the effects of either IL-6 or TNF-α on skeletal muscle FA metabolism. Here, we used a pulse-chase technique to determine the effect of IL-6 (50–5,000 pg/ml) and TNF-α (50–5,000 pg/ml) on FA metabolism in isolated rat soleus muscle. IL-6 (5,000 pg/ml) increased exogenous and endogenous FA oxidation by ∼50% ( P < 0.05) but had no effect on FA uptake or incorporation of FA into endogenous lipid pools. In contrast, TNF-α had no effect on FA oxidation but increased FA incorporation into diacylglycerol (DAG) by 45% ( P < 0.05). When both IL-6 (5,000 pg/ml) and insulin (10 mU/ml) were present, IL-6 attenuated insulin's suppressive effect on FA oxidation, increasing exogenous FA oxidation (+37%, P < 0.05). Furthermore, in the presence of insulin, IL-6 reduced the esterification of FA to triacylglycerol by 22% ( P < 0.05). When added in combination with IL-6 or leptin (10 μg/ml), the TNF-α-induced increase in DAG synthesis was inhibited. In conclusion, the results demonstrate that IL-6 plays an important role in regulating fat metabolism in muscle, increasing rates of FA oxidation, and attenuating insulin's lipogenic effects. In contrast, TNF-α had no effect on FA oxidation but increased FA incorporation into DAG, which may be involved in the development of TNF-α-induced insulin resistance in skeletal muscle.


2002 ◽  
Vol 282 (2) ◽  
pp. G257-G266 ◽  
Author(s):  
Hailing Liu ◽  
Brett E. Jones ◽  
Cynthia Bradham ◽  
Mark J. Czaja

The mechanisms underlying hepatocyte sensitization to tumor necrosis factor-α (TNF-α)-mediated cell death remain unclear. Increases in hepatocellular oxidant stress such as those that occur with hepatic overexpression of cytochrome P-450 2E1 (CYP2E1) may promote TNF-α death. TNF-α treatment of hepatocyte cell lines with differential CYP2E1 expression demonstrated that overexpression of CYP2E1 converted the hepatocyte TNF-α response from proliferation to apoptotic and necrotic cell death. Death occurred despite the presence of increased levels of nuclear factor-κB transcriptional activity and was associated with increased lipid peroxidation and GSH depletion. CYP2E1-overexpressing hepatocytes had increased basal and TNF-α-induced levels of c-Jun NH2-terminal kinase (JNK) activity, as well as prolonged JNK activation after TNF-α stimulation. Sensitization to TNF-α-induced cell death by CYP2E1 overexpression was inhibited by antioxidants or adenoviral expression of a dominant-negative c-Jun. Increased CYP2E1 expression sensitized hepatocytes to TNF-α toxicity mediated by c-Jun and overwhelming oxidative stress. The chronic increase in intracellular oxidant stress created by CYP2E1 overexpression may serve as a mechanism by which hepatocytes are sensitized to TNF-α toxicity in liver disease.


2006 ◽  
Vol 173 (5) ◽  
pp. 665-671 ◽  
Author(s):  
Yoshitaka Nakamori ◽  
Masahiro Emoto ◽  
Naofumi Fukuda ◽  
Akihiko Taguchi ◽  
Shigeru Okuya ◽  
...  

Tumor necrosis factor-α (TNF-α) signaling through the IκB kinase (IKK) complex attenuates insulin action via the phosphorylation of insulin receptor substrate 1 (IRS-1) at Ser307. However, the precise molecular mechanism by which the IKK complex phosphorylates IRS-1 is unknown. In this study, we report nuclear factor κB essential modulator (NEMO)/IKK-γ subunit accumulation in membrane ruffles followed by an interaction with IRS-1. This intracellular trafficking of NEMO requires insulin, an intact actin cytoskeletal network, and the motor protein Myo1c. Increased Myo1c expression enhanced the NEMO–IRS-1 interaction, which is essential for TNF-α– induced phosphorylation of Ser307–IRS-1. In contrast, dominant inhibitory Myo1c cargo domain expression diminished this interaction and inhibited IRS-1 phosphorylation. NEMO expression also enhanced TNF-α–induced Ser307–IRS-1 phosphorylation and inhibited glucose uptake. In contrast, a deletion mutant of NEMO lacking the IKK-β–binding domain or silencing NEMO blocked the TNF-α signal. Thus, motor protein Myo1c and its receptor protein NEMO act cooperatively to form the IKK–IRS-1 complex and function in TNF-α–induced insulin resistance.


2000 ◽  
Vol 14 (2) ◽  
pp. 187-197 ◽  
Author(s):  
Markus Bitzer ◽  
Gero von Gersdorff ◽  
Dan Liang ◽  
Alfredo Dominguez-Rosales ◽  
Amer A. Beg ◽  
...  

A number of pathogenic and proinflammatory stimuli, and the transforming growth factor-β (TGF-β) exert opposing activities in cellular and immune responses. Here we show that the RelA subunit of nuclear factor κB (NF-κB/RelA) is necessary for the inhibition of TGF-β-induced phosphorylation, nuclear translocation, and DNA binding of SMAD signaling complexes by tumor necrosis factor-α (TNF-α). The antagonism is mediated through up-regulation of Smad7 synthesis and induction of stable associations between ligand-activated TGF-β receptors and inhibitory Smad7. Down-regulation of endogenous Smad7 by expression of antisense mRNA releases TGF-β/SMAD-induced transcriptional responses from suppression by cytokine-activated NF-κB/RelA. Following stimulation with bacterial lipopolysaccharide (LPS), or the proinflammatory cytokines TNF-α and interleukin-1β (IL-1β, NF-κB/RelA induces Smad7 synthesis through activation of Smad7 gene transcription. These results suggest a mechanism of suppression of TGF-β/SMAD signaling by opposing stimuli mediated through the activation of inhibitory Smad7 by NF-κB/RelA.


2013 ◽  
Vol 91 (11) ◽  
pp. 941-950 ◽  
Author(s):  
Nathalie Quinson ◽  
Véronique Vitton ◽  
Michel Bouvier ◽  
Jean-Charles Grimaud ◽  
Anne Abysique

The involvement of tumour necrosis factor α (TNF-α) in inflammatory bowel disease (IBD) has been established, and anti-TNF-α has been suggested as a therapeutic approach for the treatment of these pathologies. We studied the effects of TNF-α on leptin-sensitive intestinal vagal units to determine whether TNF-α exerts its effects through the intestinal vagal mechanoreceptors and to investigate its interactions with substances regulating food intake. The activity of intestinal vagal mechanoreceptors was recorded via microelectrodes implanted into the nodose ganglion in anesthetized cats. TNF-α (1 μg, i.a.) increased the discharge frequency of leptin-activated units (type 1 units; P < 0.05) and had no effect on the discharge frequency of leptin-inhibited units (type 2 units). When TNF-α was administered 20 min after sulfated cholecystokinin-8 (CCK), its excitatory effects on type 1 units were significantly enhanced (P < 0.0001) and type 2 units were significantly (P < 0.05) activated. Pre-treatment with Il-1ra (250 μg, i.a.) blocked the excitatory effects of TNF-α on type 1 units whereas the excitatory effects of TNF-α administration after CCK treatment on type 2 units were not modified. The activation of leptin-sensitive units by TNF-α may explain, at least in part, the weight loss observed in IBD.


2010 ◽  
Vol 79 (4) ◽  
pp. 559-569 ◽  
Author(s):  
Barbara Jana ◽  
Marlena Koszykowska ◽  
Aneta Andronowska

The present study was undertaken to determine the effect of interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumour necrosis factor-α (TNF-α) on prostaglandin (PG)F2α and PGE2 secretion as well as cyclooxygenase-2 (COX-2) protein expression in myometrium collected on days 25, 30 and 40 of pregnancy in pigs. Myometrial slices were incubated for 16 h with IL-1β, IL-6 and TNF-α (1 or 10 ng/ml of medium) or two combinations of the three cytokines (1 or 10 ng/ml of each cytokine per combination). We demonstrated the stimulatory effect of IL-1β and IL-6 on PGF2α and PGE2 secretion from myometrium collected on all examined days of pregnancy, excepting of influence of IL-6 on release of PGF2α by tissue from day 30. In turn, TNF-α was able to stimulate only PGE2 secretion by myometrium of 40-day-pregnant gilts. The three cytokines applied in combination augmented release of PGE2 from myometrium collected on days 30 and 40 of pregnancy. Stimulation of PGE2 secretion by cytokines used individually was more frequent than that of PGF2α. Moreover, an enhancement in PGF2α and/or PGE2 release was accompanied by an increase of COX-2 protein expression. Our study shows the ability of cytokines to stimulate PGF2α and PGE2 release by porcine myometrium from the first third of pregnancy. Obtained data suggest that locally PGs produced in myometrium influencing the uterine contraction activity may be important for the maintenance of myometrial quiescence during pregnancy and confirm also that the complex cytokine network is an important regulatory mechanism of PGs production during pregnancy.


Sign in / Sign up

Export Citation Format

Share Document